Wind Energy Systems

Author: John Dalsgaard Sørensen
Publisher: Elsevier
ISBN: 0857090631
Size: 29.49 MB
Format: PDF, ePub, Mobi
View: 3413
Download
Large-scale wind power generation is one of the fastest developing sources of renewable energy and already makes a substantial contribution to power grids in many countries worldwide. With technology maturing, the challenge is now to increase penetration, and optimise the design, construction and performance of wind energy systems. Fundamental issues of safety and reliability are paramount in this drive to increase capacity and efficiency. Wind energy systems: Optimising design and construction for safe and reliable operation provides a comprehensive review of the latest developments in the design, construction and operation of large-scale wind energy systems, including in offshore and other problematic environments. Part one provides detailed coverage of wind resource assessment and siting methods relevant to wind turbine and wind farm planning, as well as aeroelastics, aerodynamics, and fatigue loading that affect the safety and reliability of wind energy systems. This coverage is extended in part two, where the design and development of individual components is considered in depth, from wind turbine rotors to drive train and control systems, and on to tower design and construction. Part three explores operation and maintenance issues, such as reliability and maintainability strategies and condition monitoring systems, before discussing performance assessment and optimisation routes for wind energy systems in low wind speed environments and cold climates. Part four reviews offshore wind energy systems development, from the impact of environmental loads such as wind, waves and ice, to site specific construction and integrated wind farm planning, and of course the critical issues and strategies for offshore operation and maintenance. With its distinguished editors and international teams of contributors, Wind energy systems is a standard reference for wind power engineers, technicians and manufacturers, as well as researchers and academics involved in this expanding field. Reviews the latest developments in the design, construction and operation of large-scale wind energy systems Offers detailed coverage of wind resource assessment and siting methods relevant to wind turbine and wind farm planning Explores operation and maintenance issues, such as reliability and maintainability strategies and condition monitoring systems

Stand Alone And Hybrid Wind Energy Systems

Author: J K Kaldellis
Publisher: Elsevier
ISBN: 1845699629
Size: 19.74 MB
Format: PDF, Kindle
View: 1896
Download
Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids. Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems. Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind -photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their application for desalination systems. With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods Reviews the development and operation of stand-alone and hybrid wind energy systems Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems

Offshore Wind Energy Technology

Author: Olimpo Anaya-Lara
Publisher: John Wiley & Sons
ISBN: 1119097762
Size: 54.16 MB
Format: PDF, Docs
View: 6091
Download
About offshore wind enery production. Includes information on both fixed and floating turbine support structures.

Electrical Drives For Direct Drive Renewable Energy Systems

Author: Markus Mueller
Publisher: Elsevier
ISBN: 0857097490
Size: 40.62 MB
Format: PDF, ePub, Docs
View: 3569
Download
Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems. With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. An authorative guide to the design, development and operation of gearless direct drives Discusses the principles of electrical design for permanent magnet generators and electrical, thermal and structural generator design and systems integration Investigates the commercial applications of wind turbine drive systems

Membrane Reactors For Energy Applications And Basic Chemical Production

Author: Angelo Basile
Publisher: Elsevier
ISBN: 1782422277
Size: 70.61 MB
Format: PDF, Mobi
View: 525
Download
Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Environmental Remediation And Restoration Of Contaminated Nuclear And Norm Sites

Author: L van Velzen
Publisher: Elsevier
ISBN: 1782422382
Size: 69.88 MB
Format: PDF, Docs
View: 6993
Download
Nuclear sites become contaminated with radionuclides due to accidents and activities carried out without due consideration for the environment. Naturally-occurring radioactive materials (NORM) released by industrial processes such as coal power production and fertilizer manufacture may also require clean-up. Environmental remediation and restoration aim to reduce exposure to radiation from contaminated soil or groundwater. This book provides a comprehensive overview of this area. Part 1 provides an introduction to the different types of contaminated site and their characteristics. Part 2 addresses environmental restoration frameworks and processes. Part 3 then reviews different remediation techniques and methods of waste disposal. Explores types and characteristics of contaminated nuclear and NORM sites Provides an in depth guide to environmental restoration frameworks and processes including stakeholder involvement, risk assessment and cost-benefit analysis in the remediation and restoration of contaminated nuclear and NORM sites Offers coverage of remediation techniques and waste disposal from electrokinetic remediation to in situ and ex situ bioremediation of radionuclides contaminated soils

Gasification For Synthetic Fuel Production

Author: R Luque
Publisher: Elsevier
ISBN: 085709808X
Size: 70.35 MB
Format: PDF, ePub
View: 5914
Download
Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification Reviews gasification processes for liquid fuel production Outlines the different applications of gasification technology

Offshore Wind Farms

Author: Chong Ng
Publisher: Woodhead Publishing
ISBN: 0081007809
Size: 48.99 MB
Format: PDF, Docs
View: 4687
Download
Offshore Wind Farms: Technologies, Design and Operation provides the latest information on offshore wind energy, one of Europe’s most promising and quickly maturing industries, and a potentially huge untapped renewable energy source which could contribute significantly towards EU 20-20-20 renewable energy generation targets. It has been estimated that by 2030 Europe could have 150GW of offshore wind energy capacity, meeting 14% of our power demand. Offshore Wind Farms: Technologies, Design and Operation provides a comprehensive overview of the emerging technologies, design, and operation of offshore wind farms. Part One introduces offshore wind energy as well as offshore wind turbine siting with expert analysis of economics, wind resources, and remote sensing technologies. The second section provides an overview of offshore wind turbine materials and design, while part three outlines the integration of wind farms into power grids with insights to cabling and energy storage. The final section of the book details the installation and operation of offshore wind farms with chapters on condition monitoring and health and safety, amongst others. Provides an in-depth, multi-contributor, comprehensive overview of offshore technologies, including design, monitoring, and operation Edited by respected and leading experts in the field, with experience in both academia and industry Covers a highly relevant and important topic given the great potential of offshore wind power in contributing significantly to EU 20-20-20 renewable energy targets

Eco Friendly Innovations In Electricity Transmission And Distribution Networks

Author: Jean-Luc Bessede
Publisher: Elsevier
ISBN: 1782420193
Size: 13.28 MB
Format: PDF, ePub, Docs
View: 2298
Download
Electricity transmission and distribution (T&D) networks carry electricity from generation sites to demand sites. With the increasing penetration of decentralised and renewable energy systems, in particular variable power sources such as wind turbines, and the rise in demand-side technologies, the importance of innovative products has never been greater. Eco-design approaches and standards in this field are aimed at improving the performance as well as the overall sustainability of T&D network equipment. This multidisciplinary reference provides coverage of developments and lessons-learned in the fields of eco-design of innovation from product-specific issues to system approaches, including case studies featuring problem-solving methodologies applicable to electricity transmission and distribution networks. Discusses key environmental issues and methodologies for eco-design, and applies this to development of equipment for electricity transmission and distribution. Provides analysis of using and assessing advanced equipment for wind energy systems. Includes reviews of the energy infrastructure for demand-side management in the US and Scandinavia.

Metropolitan Sustainability

Author: F Zeman
Publisher: Elsevier
ISBN: 085709646X
Size: 36.33 MB
Format: PDF, ePub, Mobi
View: 5229
Download
Global populations have grown rapidly in recent decades, leading to ever increasing demands for shelter, resources, energy and utilities. Coupled with the worldwide need to achieve lower impact buildings and conservation of resources, the need to achieve sustainability in urban environments has never been more acute. This book critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability, and assist nations in meeting the needs of their growing urban populations. Part one introduces key issues related to metropolitan sustainability, including the use of both urban metabolism and benefit cost analysis. Part two focuses on urban land use and the environmental impact of the built environment. The urban heat island effect, redevelopment of brownfield sites and urban agriculture are discussed in depth, before part three goes on to explore urban air pollution and emissions control. Urban water resources, reuse and management are explored in part four, followed by a study of urban energy supply and management in part five. Solar, wind and bioenergy, the role of waste-to-energy systems in the urban infrastructure, and smart energy for cities are investigated. Finally, part six considers sustainable urban development, transport and planning. With its distinguished editor and international team of expert contributors, Metropolitan sustainability is an essential resource for low-impact building engineers, sustainability consultants and architects, town and city planners, local/municipal authorities, and national and non-governmental bodies, and provides a thorough overview for academics of all levels in this field. Critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability Will assist nations in meeting the needs of their growing urban populations Chapters discuss urban land use, the environmental impact of the build environment, the urban heat island effect, urban air pollution and emissions control, among other topics