Thermal Radiation Heat Transfer Fourth Edition

Author: Robert Siegel
Publisher: CRC Press
ISBN: 9781560328391
Size: 19.99 MB
Format: PDF
View: 696
Download
This extensively revised 4th edition provides an up-to-date, comprehensive single source of information on the important subjects in engineering radiative heat transfer. It presents the subject in a progressive manner that is excellent for classroom use or self-study, and also provides an annotated reference to literature and research in the field. The foundations and methods for treating radiative heat transfer are developed in detail, and the methods are demonstrated and clarified by solving example problems. The examples are especially helpful for self-study. The treatment of spectral band properties of gases has been made current and the methods are described in detail and illustrated with examples. The combination of radiation with conduction and/or convection has been given more emphasis nad has been merged with results for radiation alone that serve as a limiting case; this increases practicality for energy transfer in translucent solids and fluids. A comprehensive catalog of configuration factors on the CD that is included with each book provides over 290 factors in algebraic or graphical form. Homework problems with answers are given in each chapter, and a detailed and carefully worked solution manual is available for instructors.

Thermal Radiation Heat Transfer 6th Edition

Author: John R. Howell
Publisher: CRC Press
ISBN: 9781466593268
Size: 58.80 MB
Format: PDF, ePub, Docs
View: 2376
Download
Explore the Radiative Exchange between Surfaces Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE. What’s New in the Sixth Edition This revised version updates information on properties of surfaces and of absorbing/emitting/scattering materials, radiative transfer among surfaces, and radiative transfer in participating media. It also enhances the chapter on near-field effects, addresses new applications that include enhanced solar cell performance and self-regulating surfaces for thermal control, and updates references. Comprised of 17 chapters, this text: Discusses the fundamental RTE and its simplified forms for different medium properties Presents an intuitive relationship between the RTE formulations and the configuration factor analyses Explores the historical development and the radiative behavior of a blackbody Defines the radiative properties of solid opaque surfaces Provides a detailed analysis and solution procedure for radiation exchange analysis Contains methods for determining the radiative flux divergence (the radiative source term in the energy equation) Thermal Radiation Heat Transfer, 6th Edition explores methods for solving the RTE to determine the local spectral intensity, radiative flux, and flux gradient. This book enables you to assess and calculate the exchange of energy between objects that determine radiative transfer at different energy levels.

Thermal Radiation Heat Transfer

Author: Robert Siegel
Publisher: Taylor & Francis
ISBN: 9780891162711
Size: 28.64 MB
Format: PDF, ePub, Mobi
View: 4642
Download
This extensively revised 4th edition provides an up-to-date, comprehensive single source of information on the important subjects in engineering radiative heat transfer. It presents the subject in a progressive manner that is excellent for classroom use or self-study, and also provides an annotated reference to literature and research in the field. The foundations and methods for treating radiative heat transfer are developed in detail, and the methods are demonstrated and clarified by solving example problems. The examples are especially helpful for self-study. The treatment of spectral band properties of gases has been made current and the methods are described in detail and illustrated with examples. The combination of radiation with conduction and/or convection has been given more emphasis nad has been merged with results for radiation alone that serve as a limiting case; this increases practicality for energy transfer in translucent solids and fluids. A comprehensive catalog of configuration factors on the CD that is included with each book provides over 290 factors in algebraic or graphical form. Homework problems with answers are given in each chapter, and a detailed and carefully worked solution manual is available for instructors.

Thermal Radiation Heat Transfer 6th Edition

Author: John R. Howell
Publisher: CRC Press
ISBN: 149875774X
Size: 46.75 MB
Format: PDF, ePub, Docs
View: 5158
Download
Explore the Radiative Exchange between Surfaces Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE. What’s New in the Sixth Edition This revised version updates information on properties of surfaces and of absorbing/emitting/scattering materials, radiative transfer among surfaces, and radiative transfer in participating media. It also enhances the chapter on near-field effects, addresses new applications that include enhanced solar cell performance and self-regulating surfaces for thermal control, and updates references. Comprised of 17 chapters, this text: Discusses the fundamental RTE and its simplified forms for different medium properties Presents an intuitive relationship between the RTE formulations and the configuration factor analyses Explores the historical development and the radiative behavior of a blackbody Defines the radiative properties of solid opaque surfaces Provides a detailed analysis and solution procedure for radiation exchange analysis Contains methods for determining the radiative flux divergence (the radiative source term in the energy equation) Thermal Radiation Heat Transfer, 6th Edition explores methods for solving the RTE to determine the local spectral intensity, radiative flux, and flux gradient. This book enables you to assess and calculate the exchange of energy between objects that determine radiative transfer at different energy levels.

A Heat Transfer Textbook

Author: John H Lienhard
Publisher: Courier Corporation
ISBN: 0486318370
Size: 49.12 MB
Format: PDF, ePub
View: 2990
Download
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' insight into related phenomena. Three introductory chapters form a minicourse in heat transfer, covering all of the subjects discussed in detail in subsequent chapters. This unique and effective feature introduces heat exchangers early in the development, rather than at the end. The authors also present a novel and simplified method for dimensional analysis, and they capitalize on the similarity of natural convection and film condensation to develop these two topics in a parallel manner. Worked examples and end-of-chapter exercises appear throughout the book, along with well-drawn, illuminating figures.

Fundamentals Of Heat And Mass Transfer 5th Ed

Author: Incropera
Publisher: John Wiley & Sons
ISBN: 9788126512614
Size: 76.82 MB
Format: PDF, ePub
View: 3796
Download
This best-selling book in the field provides a complete introduction to the physical origins of heat and mass transfer. Noted for its crystal clear presentation and easy-to-follow problem solving methodology, Incropera and Dewitt's systematic approach to the first law develop readers confidence in using this essential tool for thermal analysis.· Introduction to Conduction· One-Dimensional, Steady-State Conduction· Two-Dimensional, Steady-State Conduction· Transient Conduction· Introduction to Convection· External Flow· Internal Flow· Free Convection· Boiling and Condensation· Heat Exchangers· Radiation: Processes and Properties· Radiation Exchange Between Surfaces· Diffusion Mass Transfer

Introduction To Heat Transfer

Author: Theodore L. Bergman
Publisher: John Wiley & Sons
ISBN: 0470501960
Size: 44.30 MB
Format: PDF
View: 614
Download
Completely updated, the sixth edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.

Nano Microscale Heat Transfer

Author: Zhuomin Zhang
Publisher: McGraw Hill Professional
ISBN: 0071509739
Size: 56.51 MB
Format: PDF, ePub
View: 3877
Download
A THOROUGH EXPLANATION OF THE METHODOLOGIES USED FOR SOLVING HEAT TRANSFER PROBLEMS IN MICRO- AND NANOSYSTEMS. Written by one of the field's pioneers, this highly practical, focused resource integrates the existing body of traditional knowledge with the most recent breakthroughs to offer the reader a solid foundation as well as working technical skills. THE INFORMATION NEEDED TO ACCOUNT FOR THE SIZE EFFECT WHEN DESIGNING AND ANALYZING SYSTEMS AT THE NANOMETER SCALE, WITH COVERAGE OF Statistical Thermodynamics, Quantum Mechanics, Thermal Properties of Molecules, Kinetic Theory, and Micro/Nanofluidics Thermal Transport in Solid Micro/Nanostructures, Electron and Phonon Scattering, Size Effects, Quantum Conductance, Electronic Band Theory, Tunneling, Nonequilibrium Heat Conduction, and Analysis of Solid State Devices Such As Thermoelectric Refrigeration and Optoelectronics Nanoscale Thermal Radiation and Radiative Properties of Nanomaterials, Radiation Temperature and Entropy, Surface Electromagnetic Waves, and Near-Field Radiation for Energy Conversion Devices IN THE NANOWORLD WHERE THE OLD AXIOMS OF THERMAL ANALYSIS MAY NOT APPLY, NANO/MICROSCALE HEAT TRANSFER IS AN ESSENTIAL RESEARCH AND LEARNING SOURCE. Inside: • Statistical Thermodynamics and Kinetic Theory • Thermal Properties of Solids • Thermal Transport in Solids Micro/Nanostructures • Micro/Nanoscale Thermal Radiation • Radiative Properties of Nanomaterials