The Mechanics Of Earthquakes And Faulting

Author: Christopher H. Scholz
Publisher: Cambridge University Press
ISBN: 9780521655408
Size: 36.62 MB
Format: PDF, Docs
View: 170
Download
A thoroughly updated second edition, covering all the major advances in fault analysis research.

The Complex Faulting Process Of Earthquakes

Author: J. Koyama
Publisher: Springer Science & Business Media
ISBN: 9401732612
Size: 33.16 MB
Format: PDF, Docs
View: 5109
Download
In seismology an earthquake source is described in terms of a fault with a particular rupture size. The faulting process of large earthquakes has been investigated in the last two decades through analyses of long-period seismo grams produced by advanced digital seismometry. By long-period far-field approximation, the earthquake source has been represented by physical parameters such as s~ismic moment, fault dimension and earthquake mag nitude. Meanwhile, destruction often results from strong ground motion due to large earthquakes at short distances. Since periods of strong ground motion are far shorter than those of seismic waves at teleseismic distances, the theory of long-period source process of earthquakes cannot be applied directly to strong ground motion at short distances. The excitation and propagation of high-frequency seismic waves are of special interest in recent earthquake seismology. In particular, the descrip tion and simulation of strong ground motion are very important not only for problems directly relevant to earthquake engineering, but also to the frac ture mechanics of earthquake faulting. Understanding of earthquake sources has been developed by investigating the complexity of faulting processes for the case of large earthquakes. Laboratory results on rock failures have also advanced the understanding of faulting mechanisms. Various attempts have been made to simulate, theoretically and empirically, the propagation of short-period seismic waves in the heterogeneous real earth.

Geodynamics

Author: Donald L. Turcotte
Publisher: Cambridge University Press
ISBN: 1139915851
Size: 24.69 MB
Format: PDF
View: 4891
Download
Essential reading for any Earth scientist, this classic textbook has been providing advanced undergraduate and graduate students with the fundamentals needed to develop a quantitative understanding of the physical processes of the solid earth for over thirty years. This third edition has two completely new chapters covering numerical modelling and geophysical MATLAB applications, and the text is now supported by a suite of online MATLAB codes that will enable students to grasp the practical aspects of computational modelling. The book has been brought fully up to date with the inclusion of new material on planetary geophysics and other cutting edge topics. Exercises within the text allow students to put the theory into practice as they progress through each chapter and carefully selected further reading sections guide and encourage them to delve deeper into topics of interest. Answers to problems available within the book and also online, for self-testing, complete the textbook package.

Faulting In Brittle Rocks

Author: Georg Mandl
Publisher: Springer Science & Business Media
ISBN: 3662042622
Size: 26.68 MB
Format: PDF, Kindle
View: 118
Download
This book provides an introduction into the mechanics of faulting in the brittle crust of the Earth. It developed from my annual two-semester course on tectono mechanics for graduate students of engineering geology and of rock engineering at the Technical University of Graz (Austria). In this course, it is not my task to present a broad exposition and geometrical description of geological structures, but rather to focus on the mechanical processes that produce the structures. Although this was also the aim of my former book "Mechanics of Tectonic Faulting - Models and Basic Concepts" (1988, Elsevier), henceforth referred to as MTF, the present book is different in organisation and content, in order to meet the requirements of the courses and to include more recent developments. Instead of following the traditional subdivision into extensional, compressional and strike-slip faulting, the presentation focuses on mechanical aspects of tectonic faulting that are common to various, or even all types of tectonic faults in the brittle regime. In this way, geometrically disparate or dissimilar fault structures may be revealed as closely related by the underlying mechanical process, and complex structures may be better understood. It may be useful to indicate how the chapters in the book are organised. The first three chapters are an introduction to rock mechanics, tailored to applications in geology. It also presents the extremely useful graphical method of Mohr's stress circle, which is freely used throughout the book to keep the mathematics to an absolute minimum.

Tectonic Faults

Author: Mark R. Handy
Publisher: MIT Press
ISBN: 0262083620
Size: 61.64 MB
Format: PDF, ePub
View: 5233
Download
Scientists examine tectonic faulting on all scales—from seismic fault slipto the formation of mountain ranges—and discuss its connection to a wide range of globalphenomena, including long-term climate change and evolution.

The Seismogenic Zone Of Subduction Thrust Faults

Author: Timothy H Dixon
Publisher: Columbia University Press
ISBN: 0231512015
Size: 31.46 MB
Format: PDF, ePub, Mobi
View: 6338
Download
Subduction zones, one of the three types of plate boundaries, return Earth's surface to its deep interior. Because subduction zones are gently inclined at shallow depths and depress Earth's temperature gradient, they have the largest seismogenic area of any plate boundary. Consequently, subduction zones generate Earth's largest earthquakes and most destructive tsunamis. As tragically demonstrated by the Sumatra earthquake and tsunami of December 2004, these events often impact densely populated coastal areas and cause large numbers of fatalities. While scientists have a general understanding of the seismogenic zone, many critical details remain obscure. This volume attempts to answer such fundamental concerns as why some interplate subduction earthquakes are relatively modest in rupture length (greater than 100 km) while others, such as the great (M greater than 9) 1960 Chile, 1964 Alaska, and 2004 Sumatra events, rupture along 1000 km or more. Contributors also address why certain subduction zones are fully locked, accumulating elastic strain at essentially the full plate convergence rate, while others appear to be only partially coupled or even freely slipping; whether these locking patterns persist through the seismic cycle; and what is the role of sediments and fluids on the incoming plate. Nineteen papers written by experts in a variety of fields review the most current lab, field, and theoretical research on the origins and mechanics of subduction zone earthquakes and suggest further areas of exploration. They consider the composition of incoming plates, laboratory studies concerning sediment evolution during subduction and fault frictional properties, seismic and geodetic studies, and regional scale deformation. The forces behind subduction zone earthquakes are of increasing environmental and societal importance.

Modern Global Seismology

Author: Thorne Lay
Publisher: Elsevier
ISBN: 9780080536712
Size: 40.45 MB
Format: PDF, Kindle
View: 5046
Download
Intended as an introduction to the field, Modern Global Seismology is a complete, self-contained primer on seismology. It features extensive coverage of all related aspects, from observational data through prediction, emphasizing the fundamental theories and physics governing seismic waves--both natural and anthropogenic. Based on thoroughly class-tested material, the text provides a unique perspective on the earths large-scale internal structure and dynamic processes, particularly earthquake sources, and on the application of theory to the dynamic processes of the earths upper skin. Authored by two experts in the field of geophysics. this insightful text is designed for the first-year graduate course in seismology. Exploration seismologists will also find it an invaluable resource on topics such as elastic-wave propagation, seismicinstrumentation, and seismogram analysis useful in interpreting their high-resolution images of structure for oil and mineral resource exploration. More than 400 illustrations, many from recent research articles, help readers visualize mathematical relationships 49 Boxed Features explain advanced topics Provides readers with the most in-depth presentation of earthquake physics available Contains incisive treatments of seismic waves, waveform evaluation and modeling, and seismotectonics Provides quantitative treatment of earthquake source mechanics Contains numerous examples of modern broadband seismic recordings Fully covers current seismic instruments and networks Demonstrates modern waveform inversion methods Includes extensive references for further reading