The Geometry Of Ordinary Variational Equations

Author: Olga Krupkova
Publisher: Springer
ISBN: 3540696571
Size: 74.70 MB
Format: PDF
View: 5565
Download
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.

Lie Groups Differential Equations And Geometry

Author: Giovanni Falcone
Publisher: Springer
ISBN: 3319621815
Size: 28.40 MB
Format: PDF, Docs
View: 235
Download
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

Variational Principles For Second Order Differential Equations

Author: J. Grifone
Publisher: World Scientific
ISBN: 9789810237349
Size: 41.23 MB
Format: PDF, ePub, Mobi
View: 5989
Download
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Variational Principles For Second Order Differential Equations

Author: Joseph Grifone
Publisher: World Scientific
ISBN: 9814495360
Size: 23.75 MB
Format: PDF, Mobi
View: 3938
Download
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler–Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi–Civita for some Riemann metric. To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer–Quillen–Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc. Contents:An Introduction to Formal Integrability Theory of Partial Differential SystemsFrölicher–Nijenhuis Theory of DerivationsDifferential Algebraic Formalism of ConnectionsNecessary Conditions for Variational SpraysObstructions to the Integrability of the Euler–Lagrange SystemThe Classification of Locally Variational Sprays on Two-Dimensional ManifoldsEuler–Lagrange Systems in the Isotropic Case Readership: Mathematicians. Keywords:Calculus of Variations;Inverse Problem;Euler-Lagrange Equation;Sprays;Formal Integrability;Involution;Janet-Riquier Theory;Spencer TheoryReviews: “Everybody seriously interested in the modern theory of the inverse problem of the calculus of variations should take a look at this book.” Zentralblatt MATH

Handbook Of Global Analysis

Author: Demeter Krupka
Publisher: Elsevier
ISBN: 9780080556734
Size: 78.78 MB
Format: PDF, ePub, Mobi
View: 739
Download
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics. This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics - Written by world-experts in the field - Up-to-date contents

Handbook Of Differential Geometry

Author: Franki J.E. Dillen
Publisher: Elsevier
ISBN: 9780080461205
Size: 46.34 MB
Format: PDF, Docs
View: 4668
Download
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas. . Written by experts and covering recent research . Extensive bibliography . Dealing with a diverse range of areas . Starting from the basics

The Inverse Problem Of The Calculus Of Variations

Author: Dmitry V. Zenkov
Publisher: Springer
ISBN: 9462391092
Size: 78.63 MB
Format: PDF
View: 2588
Download
The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).

Geometry And Physics

Author: Fernando Etayo
Publisher: Amer Inst of Physics
ISBN: 9780735406667
Size: 59.89 MB
Format: PDF, ePub, Mobi
View: 2432
Download
These are the 2008 Proceedings of an international workshop that happens every fall since 1992, in Spain or Portugal. It brings together geometers and physicists, to discuss the ideas and developments, in the areas of Lie algebroids, mechanics, Poisson, symplectic, Riemannian and Semi-Riemannian geometries, quantum mechanics, theory of fields, supergravity and supersymmetry.

Global Analysis And Applied Mathematics

Author: Çankaya Üniversitesi
Publisher: Amer Inst of Physics
ISBN: 9780735402096
Size: 36.13 MB
Format: PDF, Kindle
View: 1178
Download
These proceedings are divided into parts; global analysis and applications, and applied mathematics. Part one contains plenary lectures and other contributions devoted to current research in analysis on manifolds, differential equations, and mathematical physics. Part two conatins contributions on applications of differential and difference equations in different fields, and selected topics from theoretical physics.