The Design And Manufacture Of Medical Devices

Author: J Paulo Davim
Publisher: Elsevier
ISBN: 1908818182
Size: 52.25 MB
Format: PDF, Docs
View: 1568
Download
Medical devices play an important role in the field of medical and health technology, and encompass a wide range of health care products. Directive 2007/47/EC defines a medical device as any instrument, apparatus, appliance, software, material or other article, whether used alone or in combination, including the software intended by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary for its proper application, intended by the manufacturer to be used for human beings. The design and manufacture of medical devices brings together a range of articles and case studies dealing with medical device R&D. Chapters in the book cover materials used in medical implants, such as Titanium Oxide, polyurethane, and advanced polymers; devices for specific applications such as spinal and craniofacial implants, and other issues related to medical devices, such as precision machining and integrated telemedicine systems. Contains articles on a diverse range of subjects within the field, with internationally renowned specialists discussing each medical device Offers a practical approach to recent developments in the design and manufacture of medical devices Presents a topic that is the focus of research in many important universities and centres of research worldwide

Machining And Machine Tools

Author: J Paulo Davim
Publisher: Elsevier
ISBN: 0857092197
Size: 78.35 MB
Format: PDF, Docs
View: 4725
Download
This book is the third in the Woodhead Publishing Reviews: Mechanical Engineering Series, and includes high quality articles (full research articles, review articles and case studies) with a special emphasis on research and development in machining and machine-tools. Machining and machine tools is an important subject with application in several industries. Parts manufactured by other processes often require further operations before the product is ready for application. Traditional machining is the broad term used to describe removal of material from a work piece, and covers chip formation operations including: turning, milling, drilling and grinding. Recently the industrial utilization of non-traditional machining processes such as EDM (electrical discharge machining), LBM (laser-beam machining), AWJM (abrasive water jet machining) and USM (ultrasonic machining) has increased. The performance characteristics of machine tools and the significant development of existing and new processes, and machines, are considered. Nowadays, in Europe, USA, Japan and countries with emerging economies machine tools is a sector with great technological evolution. Includes high quality articles (full research articles, review articles and cases studies) with a special emphasis on research and development in machining and machine-tools Considers the performance characteristics of machine tools and the significant development of existing and new processes and machines Contains subject matter which is significant for many important centres of research and universities worldwide

Biocompatibility And Performance Of Medical Devices

Author: Jean-Pierre Boutrand
Publisher: Elsevier
ISBN: 0857096451
Size: 71.65 MB
Format: PDF, ePub
View: 3205
Download
Implant and device manufacturers are increasingly facing the challenge of proving that their products are safe and biocompatible, and that they will perform as expected. Biocompatibility and performance of medical devices provides an essential guide to the performance analysis of these vital devices. Part one introduces the key concepts and challenges faced in relation to biocompatibility in medical devices, with consideration of biological safety evaluation planning and biomechanical and biochemical compatibility in innovative biomaterials. Part two goes on to discuss the evaluation and characterisation of biocompatibility in medical devices. Topics covered include material and chemical characterisation, allowable limits for toxic leachables, in vivo and in vitro testing and blood compatibility assessment. Testing and interpreting medical device performance is the focus of part three, with chapters describing preclinical performance studies for bone, dental and soft tissue implants, and mechanical testing of soft and hard tissue implants. Part four provides information on the regulation of medical devices in the European Union, Japan and China, and the book concludes with part five, a review of histopathology principles for biocompatibility and performance studies. With its distinguished editor and international team of expert contributors, Biocompatibility and performance of medical devices is a vital tool for all those involved in the research, design, production and application of medical devices, including research directors, production companies and medical regulatory agencies, as well as industry professionals and academics. Examines the key concepts and challenges faced in relation to biocompatibility in medical devices Discusses evaluation and characterisation issues, including material and chemical characterization, allowable limits for toxic leachables, in vivo and in vitro testing, and blood compatibility assessment Delivers a comprehensive overview of testing and interpreting medical device performance

Engineering Textiles

Author: Y El Mogahzy
Publisher: Elsevier
ISBN: 1845695410
Size: 26.39 MB
Format: PDF
View: 7072
Download
The need for manufacturers to make new products, diversify existing products and remain globally competitive is increasing. Engineering textiles: integrating the design and manufacture of textile products covers many aspects of product development and design conceptualization for both technical and traditional textiles. It also discusses several approaches to the fiber-to-fabric engineering of various textile products. Part one discusses fiber-to-fabric engineering in the context of product development and design of fiber-based products. Part two discusses the different types of fibers, yarns and fabrics suitable for the production of traditional and function-focused textiles. Chapters include key topics such as structure, characteristics and the design of textiles. Part three concludes with a discussion of the development of specific fibre applications, ranging from traditional textile products through to technical textiles such as transport and medical applications. Written by a highly distinguished author, this book is a pioneering guide to textile product design and development for a broad spectrum of readers, ranging from engineers in all fields, including textiles, material, mechanical, electrical, civil, chemical, polymer and fiber engineers. It is also suitable for textile technologists, fiber scientists and for those involved in research and development of both traditional and new-generation textile products. Reviews aspects of product development and design conceptualisation for both technical and traditional textiles Analyses material selection including structure and characteristics of various fibres Examines the development of fibrous products for transportation, medical and protection applications

Mems For Biomedical Applications

Author: Shekhar Bhansali
Publisher: Elsevier
ISBN: 0857096273
Size: 50.19 MB
Format: PDF
View: 2822
Download
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology. The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS. With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Biotextiles As Medical Implants

Author: M W King
Publisher: Elsevier
ISBN: 0857095609
Size: 61.48 MB
Format: PDF, ePub
View: 2526
Download
Textiles play a vital role in the manufacture of various medical devices, including the replacement of diseased, injured or non-functioning organs within the body. Biotextiles as medical implants provides an invaluable single source of information on the main types of textile materials and products used for medical implants. The first part of the book focuses on polymers, fibers and textile technologies, and these chapters discuss the manufacture, sterilization, properties and types of biotextiles used for medical applications, including nanofibers, resorbable polymers and shaped biotextiles. The chapters in part two provide a comprehensive discussion of a range of different clinical applications of biotextiles, including surgical sutures, arterial prostheses, stent grafts, percutaneous heart valves and drug delivery systems. This book provides a concise review of the technologies, properties and types of biotextiles used as medical devices. In addition, it addresses the biological dimension of how to design devices for different clinical applications, providing an invaluable reference for biomedical engineers of medical textiles, quality control and risk assessment specialists, as well as managers of regulatory affairs. The subject matter will also be of interest to professionals within the healthcare system including surgeons, nurses, therapists, sourcing and purchasing agents, researchers and students in different disciplines. Provides an invaluable single source of information on the main types of textile materials and products used for medical implants Addresses the technologies used and discusses the manufacture, properties and types of biotextiles Examines applications of biotextiles as medical implants, including drug delivery systems and stent grafts and percutaneous heart valves

Microfluidic Devices For Biomedical Applications

Author: Xiujun James Li
Publisher: Elsevier
ISBN: 0857097040
Size: 48.15 MB
Format: PDF
View: 3902
Download
Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications. The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores in detail a wide range of medical applications Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies Considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering

Titanium In Medical And Dental Applications

Author: Francis H Froes
Publisher: Woodhead Publishing
ISBN: 0128124571
Size: 67.82 MB
Format: PDF, Docs
View: 6246
Download
Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices. Provides an understanding of the essential and broad applications of Titanium in both the medical and dental industries Discusses the pathways to manufacturing titanium into critical biomedical and dental devices Includes insights into further applications within the industry

Fundamental Biomaterials Ceramics

Author: Sabu Thomas
Publisher: Woodhead Publishing
ISBN: 0081022042
Size: 79.98 MB
Format: PDF, ePub
View: 1534
Download
Fundamental Biomaterials: Ceramics provides current information on ceramics and their conversion from base materials to medical devices. Initial chapters review biomedical applications and types of ceramics, with subsequent sections focusing on the properties of ceramics, and on corrosion, degradation and wear of ceramic biomaterials. The book is ideal for researchers and professionals in the development stages of design, but is also helpful to medical researchers who need to understand and communicate the requirements of a biomaterial for a specific application. This title is the second in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on material properties, behavior, biocompatibility and applications. In addition, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels Provides current information on findings and developments of ceramics and their conversion from base materials to medical devices Includes analyses of the types of ceramics and a discussion of a range of biomedical applications and essential properties, including information on corrosion, degradation and wear, and lifetime prediction of ceramic biomaterials Explores both theoretical and practical aspects of ceramics in biomaterials

Durability And Reliability Of Medical Polymers

Author: Mike Jenkins
Publisher: Elsevier
ISBN: 0857096516
Size: 65.76 MB
Format: PDF, ePub, Mobi
View: 3184
Download
Given the widespread use of polymers in medical devices, the durability and reliability of this material in use is an area of critical importance. Durability and reliability of medical polymers reviews the performance of both bioresorbable and non-bioresorbable medical polymers. Part one provides a review of the types and properties of bioresorbable medical polymers. The effect of molecular structure on properties is discussed, along with the processing of bioresorbable and other polymers for medical applications. Transport phenomena and the degradation of bioresorbable medical polymers are reviewed, before an exploration of synthetic bioresorbable polymers and their use in orthopaedic tissue regeneration. Part two goes on to explore the durability and reliability of non-bioresorbable medical polymers, and wear processes in polymer implants and ageing processes of biomedical polymers in the body are discussed in depth, before an investigation into manufacturing defects and the failure of synthetic polymeric medical devices. With its distinguished editors and international team of expert contributors, Durability and reliability of medical polymers is an essential tool for all materials scientists, researchers and engineers involved in the design, development and application of medical polymers, whilst also providing a helpful overview of the subject for biologists, chemist and clinicians. Comprehensively examines the performance of both bioresorbable and non-bioresorbable medical polymers Discusses the processing of bioresorbable and other polymers for medical applications, before reviewing the degradation of bioresorbable medical polymers Explores the durability and reliability of non-bioresorbable medical polymers and discusses wear processes in polymer implants and ageing processes of biomedical polymers in the body