The Classical Theory Of Fields

Author: L D Landau
Publisher: Elsevier
ISBN: 1483293289
Size: 70.69 MB
Format: PDF, Docs
View: 2719
Translated from the 6th Russian edition, this latest edition contains seven new sections with chapters on General Relativity, Gravitational Waves and Relativistic Cosmology, where Professor Lifshitz's interests lay. The text of the 3rd English edition has been thoroughly revised and additional problems inserted

Statistical Physics Of Particles

Author: Mehran Kardar
Publisher: Cambridge University Press
ISBN: 1139464876
Size: 53.64 MB
Format: PDF, Kindle
View: 142
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures taught by Professor Kardar at MIT, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set of solutions is available to lecturers on a password protected website at A companion volume, Statistical Physics of Fields, discusses non-mean field aspects of scaling and critical phenomena, through the perspective of renormalization group.

A Concise Handbook Of Mathematics Physics And Engineering Sciences

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 9781439806401
Size: 31.88 MB
Format: PDF, ePub
View: 6849
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students find difficult to understand. The first part of the book contains chapters on arithmetic, elementary and analytic geometry, algebra, differential and integral calculus, functions of complex variables, integral transforms, ordinary and partial differential equations, special functions, and probability theory. The second part discusses molecular physics and thermodynamics, electricity and magnetism, oscillations and waves, optics, special relativity, quantum mechanics, atomic and nuclear physics, and elementary particles. The third part covers dimensional analysis and similarity, mechanics of point masses and rigid bodies, strength of materials, hydrodynamics, mass and heat transfer, electrical engineering, and methods for constructing empirical and engineering formulas. The main text offers a concise, coherent survey of the most important definitions, formulas, equations, methods, theorems, and laws. Numerous examples throughout and references at the end of each chapter provide readers with a better understanding of the topics and methods. Additional issues of interest can be found in the remarks. For ease of reading, the supplement at the back of the book provides several long mathematical tables, including indefinite and definite integrals, direct and inverse integral transforms, and exact solutions of differential equations.

Symmetry Principles In Solid State And Molecular Physics

Author: Melvin Lax
Publisher: Courier Corporation
ISBN: 0486420019
Size: 62.38 MB
Format: PDF, Kindle
View: 695
High-level text applies group theory to physics problems, develops methods for solving molecular vibration problems and for determining the form of crystal tensors, develops translational properties of crystals, more. 1974 edition.

Quantum Mechanics

Author: L D Landau
Publisher: Elsevier
ISBN: 1483149129
Size: 62.30 MB
Format: PDF, ePub, Mobi
View: 7462
Quantum Mechanics, Third Edition: Non-relativistic Theory is devoted to non-relativistic quantum mechanics. The theory of the addition of angular momenta, collision theory, and the theory of symmetry are examined, together with spin, nuclear structure, motion in a magnetic field, and diatomic and polyatomic molecules. This book is comprised of 18 chapters and begins with an introduction to the basic concepts of quantum mechanics, with emphasis on the uncertainty principle, the principle of superposition, and operators, as well as the continuous spectrum and the wave function. The following chapters explore energy and momentum; Schrödinger's equation; angular momentum; and motion in a centrally symmetric field and in a magnetic field. Perturbation theory, spin, and the properties of quasi-classical systems are also considered. The remaining chapters deal with the identity of particles, atoms, and diatomic and polyatomic molecules. The final two chapters describe elastic and inelastic collisions. This monograph will be a valuable source of information for physicists.

Interacting Electrons And Quantum Magnetism

Author: Assa Auerbach
Publisher: Springer Science & Business Media
ISBN: 1461208696
Size: 38.59 MB
Format: PDF, Docs
View: 5888
In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.


Author: Daniel Z. Freedman
Publisher: Cambridge University Press
ISBN: 1139642855
Size: 17.20 MB
Format: PDF, Mobi
View: 7602
Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at

Gauge Theories In Particle Physics

Author: I.J.R. Aitchison
Publisher: CRC Press
ISBN: 9780849387753
Size: 15.27 MB
Format: PDF
View: 5713
Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this two-volume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and self-contained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED; the second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.

Wave Propagation And Group Velocity

Author: Léon Brillouin
Publisher: Academic Press
ISBN: 1483276015
Size: 32.35 MB
Format: PDF, Docs
View: 4118
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter dealing with guided waves, and many other cases of application of these definitions are quoted. These problems have come again into the foreground, in connection with the propagation of radio signals and radar. Reflection in the Heaviside layers requires a real knowledge of all these different definitions. Group velocity also plays a very important role in wave mechanics and corresponds to the speed of a particle. The present book should be very useful to physicists and radio engineers and should give them a good basis for new discussions and applications.

Nuclear Reactions For Astrophysics

Author: Ian J. Thompson
Publisher: Cambridge University Press
ISBN: 0521856353
Size: 54.74 MB
Format: PDF, Docs
View: 6549
Describes how the processes in stars which produce the chemical elements for planets and life may be reproduced in laboratories.