The Chinese Roots Of Linear Algebra

Author: Roger Hart
Publisher: JHU Press
ISBN: 9780801899584
Size: 16.61 MB
Format: PDF, Kindle
View: 7489
Mathematicians and historians of mathematics and science will find in The Chinese Roots of Linear Algebra new ways to conceptualize the intellectual development of linear algebra.

Imagined Civilizations

Author: Roger Hart
Publisher: JHU Press
ISBN: 1421406063
Size: 77.79 MB
Format: PDF
View: 2035
While the Jesuits claimed Xu as a convert, he presented the Jesuits as men from afar who had traveled from the West to China to serve the emperor.

Differential Equations With Linear Algebra

Author: Matthew R. Boelkins
Publisher: OUP USA
ISBN: 0195385861
Size: 32.31 MB
Format: PDF, ePub
View: 751
Differential Equations with Linear Algebra explores the interplay between linear algebra and differential equations by examining fundamental problems in elementary differential equations. With an example-first style, the text is accessible to students who have completed multivariable calculus and is appropriate for courses in mathematics and engineering that study systems of differential equations.

Geometry And Algebra In Ancient Civilizations

Author: Bartel L. van der Waerden
Publisher: Springer Science & Business Media
ISBN: 3642617794
Size: 42.76 MB
Format: PDF, ePub
View: 5807
Originally, my intention was to write a "History of Algebra", in two or three volumes. In preparing the first volume I saw that in ancient civiliza tions geometry and algebra cannot well be separated: more and more sec tions on ancient geometry were added. Hence the new title of the book: "Geometry and Algebra in Ancient Civilizations". A subsequent volume on the history of modem algebra is in preparation. It will deal mainly with field theory, Galois theory and theory of groups. I want to express my deeply felt gratitude to all those who helped me in shaping this volume. In particular, I want to thank Donald Blackmore Wagner (Berkeley) who put at my disposal his English translation of the most interesting parts of the Chinese "Nine Chapters of the Art of Arith metic" and of Liu Hui's commentary to this classic, and also Jacques Se siano (Geneva), who kindly allowed me to use his translation of the re cently discovered Arabic text of four books of Diophantos not extant in Greek. Warm thanks are also due to Wyllis Bandler (Colchester, England) who read my English text very carefully and suggested several improve ments, and to Annemarie Fellmann (Frankfurt) and Erwin Neuenschwan der (Zurich) who helped me in correcting the proof sheets. Miss Fellmann also typed the manuscript and drew the figures. I also want to thank the editorial staff and production department of Springer-Verlag for their nice cooperation.

Linear Algebra In Action

Author: Harry Dym
Publisher: American Mathematical Soc.
ISBN: 1470409089
Size: 17.63 MB
Format: PDF
View: 1991
Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. In this new edition, most of the chapters in the first edition have been revised, some extensively. The revisions include changes in a number of proofs, either to simplify the argument, to make the logic clearer or, on occasion, to sharpen the result. New introductory sections on linear programming, extreme points for polyhedra and a Nevanlinna-Pick interpolation problem have been added, as have some very short introductory sections on the mathematics behind Google, Drazin inverses, band inverses and applications of SVD together with a number of new exercises.

Taming The Unknown

Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 1400850525
Size: 17.60 MB
Format: PDF, ePub
View: 2665
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further developed by medieval and early modern European mathematicians. With the introduction of a flexible and operative symbolism in the sixteenth and seventeenth centuries, algebra entered into a dynamic period characterized by the analytic geometry that could evaluate curves represented by equations in two variables, thereby solving problems in the physics of motion. This new symbolism freed mathematicians to study equations of degrees higher than two and three, ultimately leading to the present abstract era. Taming the Unknown follows algebra’s remarkable growth through different epochs around the globe.

Mathematics For Computer Algebra

Author: Maurice Mignotte
Publisher: Springer Science & Business Media
ISBN: 1461391717
Size: 72.33 MB
Format: PDF
View: 4142
This book corresponds to a mathematical course given in 1986/87 at the University Louis Pasteur, Strasbourg. This work is primarily intended for graduate students. The following are necessary prerequisites : a few standard definitions in set theory, the definition of rational integers, some elementary facts in Combinatorics (maybe only Newton's binomial formula), some theorems of Analysis at the level of high schools, and some elementary Algebra (basic results about groups, rings, fields and linear algebra). An important place is given to exercises. These exercises are only rarely direct applications of the course. More often, they constitute complements to the text. Mostly, hints or references are given so that the reader should be able to find solutions. Chapters one and two deal with elementary results of Number Theory, for example : the euclidean algorithm, the Chinese remainder theorem and Fermat's little theorem. These results are useful by themselves, but they also constitute a concrete introduction to some notions in abstract algebra (for example, euclidean rings, principal rings ... ). Algorithms are given for arithmetical operations with long integers. The rest of the book, chapters 3 through 7, deals with polynomials. We give general results on polynomials over arbitrary rings. Then polynomials with complex coefficients are studied in chapter 4, including many estimates on the complex roots of polynomials. Some of these estimates are very useful in the subsequent chapters.

A Computational Introduction To Number Theory And Algebra

Author: Victor Shoup
Publisher: Cambridge University Press
ISBN: 0521516447
Size: 43.37 MB
Format: PDF, Docs
View: 6700
An introductory graduate-level text emphasizing algorithms and applications. This second edition includes over 200 new exercises and examples.

A Concrete Introduction To Higher Algebra

Author: Lindsay N. Childs
Publisher: Springer Science & Business Media
ISBN: 0387745270
Size: 80.80 MB
Format: PDF
View: 150
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book.

A Book Of Abstract Algebra

Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Size: 56.64 MB
Format: PDF, Mobi
View: 1801
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.