The Essentials Of Statistics Ii

Author: Emil G. Milewski
Publisher: Research & Education Assoc.
ISBN: 9780878916597
Size: 34.97 MB
Format: PDF
View: 6783
Download
REA’s Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Statistics II discusses sampling theory, statistical inference, independent and dependent variables, correlation theory, experimental design, count data, chi-square test, and time series.

Physical Chemistry Ii Essentials

Author: The Editors of REA
Publisher: Research & Education Assoc.
ISBN: 9780738670324
Size: 19.80 MB
Format: PDF, Docs
View: 2402
Download
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

Essentials Of Statistics For The Social And Behavioral Sciences

Author: Barry H. Cohen
Publisher: John Wiley & Sons
ISBN: 0471480762
Size: 77.89 MB
Format: PDF, Kindle
View: 7732
Download
Master the essential statistical skills used in social and behavioral sciences Essentials of Statistics for the Social and Behavioral Sciences distills the overwhelming amount of material covered in introductory statistics courses into a handy, practical resource for students and professionals. This accessible guide covers basic to advanced concepts in a clear, concrete, and readable style. Essentials of Statistics for the Social and Behavioral Sciences guides you to a better understanding of basic concepts of statistical methods. Numerous practical tips are presented for selecting appropriate statistical procedures. In addition, this useful guide demonstrates how to evaluate and interpret statistical data, provides numerous formulas for calculating statistics from tables of summary statistics, and offers a variety of worked examples. As part of the Essentials of Behavioral Science series, this book offers a thorough review of the most relevant statistical concepts and techniques that will arm you with the tools you'll need for knowledgeable, informed practice. Each concise chapter features numerous callout boxes highlighting key concepts, bulleted points, and extensive illustrative material, as well as "Test Yourself" questions that help you gauge and reinforce your grasp of the information covered.

Essentials Of Research Design And Methodology

Author: Geoffrey R. Marczyk
Publisher: John Wiley & Sons
ISBN: 0470893532
Size: 22.22 MB
Format: PDF, ePub
View: 2744
Download
Master the essential skills for designing and conducting a successful research project Essentials of Research Design and Methodology contains practical information on how to design and conduct scientific research in the behavioral and social sciences. This accessible guide covers basic to advanced concepts in a clear, concrete, and readable style. The text offers students and practitioners in the behavioral sciences and related disciplines important insights into identifying research topics, variables, and methodological approaches. Data collection and assessment strategies, interpretation methods, and important ethical considerations also receive significant coverage in this user-friendly guide. Essentials of Research Design and Methodology is the only available resource to condense the wide-ranging topics of the field into a concise, accessible format for handy and quick reference. As part of the Essentials of Behavioral Science series, this book offers a thorough review of the most relevant topics in research design and methodology. Each concise chapter features numerous callout boxes highlighting key concepts, bulleted points, and extensive illustrative material, as well as "Test Yourself" questions that help you gauge and reinforce your grasp of the information covered.

The Elements Of Statistical Learning

Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 0387216065
Size: 40.99 MB
Format: PDF, ePub, Docs
View: 195
Download
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Essential Medical Statistics

Author: Betty R. Kirkwood
Publisher: John Wiley & Sons
ISBN: 1444392840
Size: 28.53 MB
Format: PDF, ePub, Mobi
View: 2275
Download
Blackwell Publishing is delighted to announce that this book has been Highly Commended in the 2004 BMA Medical Book Competition. Here is the judges' summary of this book: "This is a technical book on a technical subject but presented in a delightful way. There are many books on statistics for doctors but there are few that are excellent and this is certainly one of them. Statistics is not an easy subject to teach or write about. The authors have succeeded in producing a book that is as good as it can get. For the keen student who does not want a book for mathematicians, this is an excellent first book on medical statistics." Essential Medical Statistics is a classic amongst medical statisticians. An introductory textbook, it presents statistics with a clarity and logic that demystifies the subject, while providing a comprehensive coverage of advanced as well as basic methods. The second edition of Essential Medical Statistics has been comprehensively revised and updated to include modern statistical methods and modern approaches to statistical analysis, while retaining the approachable and non-mathematical style of the first edition. The book now includes full coverage of the most commonly used regression models, multiple linear regression, logistic regression, Poisson regression and Cox regression, as well as a chapter on general issues in regression modelling. In addition, new chapters introduce more advanced topics such as meta-analysis, likelihood, bootstrapping and robust standard errors, and analysis of clustered data. Aimed at students of medical statistics, medical researchers, public health practitioners and practising clinicians using statistics in their daily work, the book is designed as both a teaching and a reference text. The format of the book is clear with highlighted formulae and worked examples, so that all concepts are presented in a simple, practical and easy-to-understand way. The second edition enhances the emphasis on choice of appropriate methods with new chapters on strategies for analysis and measures of association and impact. Essential Medical Statistics is supported by a web site at www.blackwellpublishing.com/essentialmedstats. This useful online resource provides statistical datasets to download, as well as sample chapters and future updates.

Essential Statistical Inference

Author: Dennis D. Boos
Publisher: Springer Science & Business Media
ISBN: 1461448182
Size: 74.58 MB
Format: PDF, ePub, Docs
View: 5713
Download
​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

Sas Essentials

Author: Alan C. Elliott
Publisher: John Wiley & Sons
ISBN: 9780470552643
Size: 60.98 MB
Format: PDF, ePub
View: 1335
Download
SAS Essentials provides an introduction to SAS statistical software, the premiere statistical data analysis tool for scientific research. Through its straightforward approach, the text presents SAS with step-by-step examples. With over fifteen years of teaching SAS courses and over fifty combined years of teaching and consulting by the authors, this valuable reference presents data manipulation and statistical techniques, including a website with examples. This textbook is essential for teachers because the chapters are self-contained and may be used accordingly to the teacher?s preference, whether for a one-semester or two-semesters course.

The Oxford Handbook Of Quantitative Methods Vol 2 Statistical Analysis

Author: Todd D. Little
Publisher: Oxford University Press
ISBN: 0199934908
Size: 78.67 MB
Format: PDF, Docs
View: 2487
Download
Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.