Statistics For The Social Sciences

Author: R. Mark Sirkin
Publisher: SAGE
ISBN: 9781412905466
Size: 49.69 MB
Format: PDF
View: 2532
Download
Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fear them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained.

Statistics For The Social Sciences

Author: Russell T. Warne
Publisher: Cambridge University Press
ISBN: 1107576970
Size: 32.61 MB
Format: PDF, Kindle
View: 1019
Download
This introductory undergraduate textbook is the first statistics textbook built around the General Linear Model.

Statistics For Social Sciences

Author: T. Rajaretnam
Publisher: SAGE Publishing India
ISBN: 9351506568
Size: 42.41 MB
Format: PDF
View: 4798
Download
A comprehensive guide to the practical applications of statistics in social sciences This book brings out the relevance of statistical tools and methods in social sciences. Describing the various statistical techniques, it highlights their purpose and application along with a brief overview on how to interpret results and draw inferences. Topical and up-to-date, it examines: • different types of statistical variables and their treatment • tabulation and graphical presentation of data • theoretical distributions and common parametric and non-parametric tests, including analysis of variance and correlation ratio • linear regression including checking for violation of assumptions, transformations of variables and predictions • inequality measures such as Lorenz curve, Gini coefficient, dissimilarity index and human development index among others. It will be indispensable for students and scholars of statistics, econometrics, psychology and those interested in the application of statistics in social sciences.

Bayesian Statistics For The Social Sciences

Author: David Kaplan
Publisher: Guilford Publications
ISBN: 1462516513
Size: 76.96 MB
Format: PDF, ePub, Mobi
View: 3541
Download
Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics. User-Friendly Features *Includes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth). *Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs. *Shows readers how to carefully warrant priors on the basis of empirical data. *Companion website features data and code for the book's examples, plus other resources.

Applied Multivariate Statistics For The Social Sciences

Author: James Paul Stevens
Publisher: Taylor & Francis
ISBN: 0805859012
Size: 14.26 MB
Format: PDF, ePub, Docs
View: 304
Download
This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.

Applied Multivariate Statistics For The Social Sciences Fifth Edition

Author: James P. Stevens
Publisher: Routledge
ISBN: 1136910697
Size: 61.92 MB
Format: PDF
View: 5879
Download
This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.

Applied Statistics For The Social And Health Sciences

Author: Rachel A. Gordon
Publisher: Routledge
ISBN: 0415875366
Size: 77.74 MB
Format: PDF, ePub
View: 5778
Download
Applied Statistics for the Social and Health Sciences provides graduate students in the social and health sciences with the basic skills that they need to estimate, interpret, present, and publish statistical models using contemporary standards. The book targets the social and health science branches such as human development, public health, sociology, psychology, education, and social work in which students bring a wide range of mathematical skills and have a wide range of methodological affinities. For these students, a successful course in statistics will not only offer statistical content but will also help them develop an appreciation for how statistical techniques might answer some of the research questions of interest to them. This book is for use in a two-semester graduate course sequence covering basic univariate and bivariate statistics and regression models for nominal and ordinal outcomes, in addition to covering ordinary least squares regression. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature thorough integration of teaching statistical theory with teaching data processing and analysis teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set. This book is for a two-semester course. For a one-semester course, see http://www.routledge.com/9780415991544/

Numbers Hypotheses Conclusions

Author: Kevin Durrheim
Publisher: Juta and Company Ltd
ISBN: 9781919713311
Size: 58.17 MB
Format: PDF, Kindle
View: 253
Download
Book & CD-ROM. This tutorial-based programme addresses some of the problems involved in teaching statistics to undergraduate social science students. These include the huge difference in ability among students, large classes that do not facilitate problem-based question-and-answer lecturing format, and a general resistance to statistics. The text emphasises contemporary approaches to data analysis, the role of statistics in sampling, and the idea that inference depends upon how sampling is conducted. The question of how one ensures that data is sound is explored with reference to measurement issues and test construction. It encourages problem-solving by getting students to go through worked examples and presenting open-ended problems and discussion questions.