Statistical Strategies For Small Sample Research

Author: Rick H. Hoyle
Publisher: SAGE
ISBN: 9780761908869
Size: 46.28 MB
Format: PDF, Docs
View: 6910
This book provides encouragement and strategies for researchers who routinely address research questions using data from small samples. Chapters cover such topics as: using multiple imputation software with small sets; computing and combining effect sizes; bootstrap hypothesis testing; application of latent variable modeling; time-series data from small numbers of individuals; and sample size, reliability and tests of statistical mediation.

Sample Size Determination In Quantitative Social Work Research

Author: Patrick Dattalo
Publisher: Oxford University Press
ISBN: 0190295546
Size: 13.97 MB
Format: PDF, ePub
View: 2828
A researchers decision about the sample to draw in a study may have an enormous impact on the results, and it rests on numerous statistical and practical considerations that can be difficult to juggle. Computer programs help, but no single software package exists that allows researchers to determine sample size across all statistical procedures. This pocket guide shows social work students, educators, and researchers how to prevent some of the mistakes that would result from a wrong sample size decision by describing and critiquing four main approaches to determining sample size. In concise, example-rich chapters, Dattalo covers sample-size determination using power analysis, confidence intervals, computer-intensive strategies, and ethical or cost considerations, as well as techniques for advanced and emerging statistical strategies such as structural equation modeling, multilevel analysis, repeated measures MANOVA and repeated measures ANOVA. He also offers strategies for mitigating pressures to increase sample size when doing so may not be feasible. Whether as an introduction to the process for students or as a refresher for experienced researchers, this practical guide is a perfect overview of a crucial but often overlooked step in empirical social work research.

Methodological And Biostatistical Foundations Of Clinical Neuropsychology And Medical And Health Disciplines

Author: Domenic V Cicchetti
Publisher: CRC Press
ISBN: 9789026519642
Size: 23.80 MB
Format: PDF, ePub, Mobi
View: 133
The goal of the second edition is to introduce the advance undergraduate or graduate student and more seasoned research scientists in any of the allied health sciences to a wide array of methodological and biostatistical issues, as they occur in the context of both published and ongoing research. Some sixty-four articles published between 1992 and 2002 have been selected from the Journal of Clinical and Experimental Neuropsychology, The Clinical Neuropsychologist, and Child Neuropsychology and reproduced in this volume. While building upon a working knowledge and understanding of the basic univariate data analytic techniques and the research designs to which they apply, the approach to the more complex multivariate techniques is presented primarily at a conceptual and essentially non-mathematical level. While the issue of the complexity of some of the more recent and standard approaches to data analytic strategies, and their important role to specific research designs is important to convey, there remains an even more fundamental issue of whether the results of correctly applied data analytic strategies make any practical or clinical sense, above and beyond their having reached levels of "statistical significance". These critical issues are addressed throughout various commentaries that the editors make at appropriate points in the text. The volume will appeal to advanced undergraduate and graduate students as well as clinical neuropsychologists and research scientists in any of the allied health disciplines.

Data Analytic Techniques For Dynamical Systems

Author: Steven M Boker
Publisher: Psychology Press
ISBN: 1135611548
Size: 64.66 MB
Format: PDF, Kindle
View: 6639
Each volume in the Notre Dame Series on Quantitative Methodology features leading methodologists and substantive experts who provide instruction on innovative techniques designed to enhance quantitative skills in a substantive area. This latest volume focuses on the methodological issues and analyses pertinent to understanding psychological data from a dynamical system perspective. Dynamical systems analysis (DSA) is increasingly used to demonstrate time-dependent variable change. It is used more and more to analyze a variety of psychological phenomena such as relationships, development and aging, emotional regulation, and perceptual processes. The book opens with the best occasions for using DSA methods. The final two chapters focus on the application of dynamical systems methods to problems in psychology such as substance use and gestural dynamics. In addition, it reviews how and when to use: time series models from a discrete time perspective stochastic differential equations in continuous time estimating continuous time differential equation models multilevel models of differential equations to estimate within-person dynamics and the corresponding population means new SEM models for dynamical systems data Data Analytic Techniques for Dynamical Systems is beneficial to advanced students and researchers in the areas of developmental psychology, family studies, language processes, cognitive neuroscience, social and personality psychology, medicine, and emotion. Due to the book’s instructive nature, it serves as an excellent text for advanced courses on this particular technique.

Data Analysis With Small Samples And Non Normal Data

Author: Carl F. Siebert
Publisher: Oxford University Press
ISBN: 0199391513
Size: 12.25 MB
Format: PDF, Docs
View: 1485
In social sciences, education, and public health research, researchers often conduct small pilot studies (or may have planned for a larger sample but lost too many cases due to attrition or missingness), leaving them with a smaller sample than they expected and thus less power for their statistical analyses. Similarly, researchers may find that their data are not normally distributed -- especially in clinical samples -- or that the data may not meet other assumptions required for parametric analyses. In these situations, nonparametric analytic strategies can be especially useful, though they are likely unfamiliar. A clearly written reference book, Data Analysis with Small Samples and Non-Normal Data offers step-by-step instructions for each analytic technique in these situations. Researchers can easily find what they need, matching their situation to the case-based scenarios that illustrate the many uses of nonparametric strategies. Unlike most statistics books, this text is written in straightforward language (thereby making it accessible for nonstatisticians) while providing useful information for those already familiar with nonparametric tests. Screenshots of the software and output allow readers to follow along with each step of an analysis. Assumptions for each of the tests, typical situations in which to use each test, and descriptions of how to explain the findings in both statistical and everyday language are all included for each nonparametric strategy. Additionally, a useful companion website provides SPSS syntax for each test, along with the data set used for the scenarios in the book. Researchers can use the data set, following the steps in the book, to practice each technique before using it with their own data. Ultimately, the many helpful features of this book make it an ideal long-term reference for researchers to keep in their personal libraries.

Handbook Of Structural Equation Modeling

Author: Rick H. Hoyle
Publisher: Guilford Publications
ISBN: 1462516793
Size: 36.93 MB
Format: PDF, ePub, Docs
View: 5491
The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results.

Small Clinical Trials

Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 9780309171144
Size: 18.12 MB
Format: PDF, Mobi
View: 7032
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

How To Lie With Statistics

Author: Darrell Huff
Publisher: W. W. Norton & Company
ISBN: 9780393070873
Size: 38.78 MB
Format: PDF, Mobi
View: 3181
Over Half a Million Copies Sold--an Honest-to-Goodness Bestseller Darrell Huff runs the gamut of every popularly used type of statistic, probes such things as the sample study, the tabulation method, the interview technique, or the way the results are derived from the figures, and points up the countless number of dodges which are used to full rather than to inform.

Regression Modeling Strategies

Author: Frank Harrell
Publisher: Springer
ISBN: 3319194259
Size: 47.68 MB
Format: PDF, Mobi
View: 1558
This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty and its effects on inference, to achieve "safe data mining." It also presents many graphical methods for communicating complex regression models to non-statisticians. Regression Modeling Strategies presents full-scale case studies of non-trivial datasets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalized least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression. As in the first edition, this text is intended for Masters' or Ph.D. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modeling techniques. Examples used in the text mostly come from biomedical research, but the methods are applicable anywhere predictive models ("analytics") are useful, including economics, epidemiology, sociology, psychology, engineering and marketing.

Quantifying The User Experience

Author: Jeff Sauro
Publisher: Morgan Kaufmann
ISBN: 0128025484
Size: 26.49 MB
Format: PDF, ePub, Mobi
View: 347
Quantifying the User Experience: Practical Statistics for User Research, Second Edition, provides practitioners and researchers with the information they need to confidently quantify, qualify, and justify their data. The book presents a practical guide on how to use statistics to solve common quantitative problems that arise in user research. It addresses questions users face every day, including, Is the current product more usable than our competition? Can we be sure at least 70% of users can complete the task on their first attempt? How long will it take users to purchase products on the website? This book provides a foundation for statistical theories and the best practices needed to apply them. The authors draw on decades of statistical literature from human factors, industrial engineering, and psychology, as well as their own published research, providing both concrete solutions (Excel formulas and links to their own web-calculators), along with an engaging discussion on the statistical reasons why tests work and how to effectively communicate results. Throughout this new edition, users will find updates on standardized usability questionnaires, a new chapter on general linear modeling (correlation, regression, and analysis of variance), with updated examples and case studies throughout. Completely updated to provide practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices Includes new and revised information on standardized usability questionnaires Includes a completely new chapter introducing correlation, regression, and analysis of variance Shows practitioners which test to use, why they work, and best practices for application, along with easy-to-use Excel formulas and web-calculators for analyzing data Recommends ways for researchers and practitioners to communicate results to stakeholders in plain English