Statistical Applications For Environmental Analysis And Risk Assessment

Author: Joseph Ofungwu
Publisher: John Wiley & Sons
ISBN: 1118634519
Size: 59.43 MB
Format: PDF, ePub, Docs
View: 5325
Download
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.

Simulation Techniques In Financial Risk Management

Author: Ngai Hang Chan
Publisher: John Wiley & Sons
ISBN: 1118735935
Size: 11.86 MB
Format: PDF
View: 4482
Download
Praise for the First Edition “…a nice, self-contained introduction to simulation and computational techniques in finance…” – Mathematical Reviews Simulation Techniques in Financial Risk Management, Second Edition takes a unique approach to the field of simulations by focusing on techniques necessary in the fields of finance and risk management. Thoroughly updated, the new edition expands on several key topics in these areas and presents many of the recent innovations in simulations and risk management, such as advanced option pricing models beyond the Black–Scholes paradigm, interest rate models, MCMC methods including stochastic volatility models simulations, model assets and model-free properties, jump diffusion, and state space modeling. The Second Edition also features: Updates to primary software used throughout the book, Microsoft Office® Excel® VBA New topical coverage on multiple assets, model-free properties, and related models More than 300 exercises at the end of each chapter, with select answers in the appendix, to help readers apply new concepts and test their understanding Extensive use of examples to illustrate how to use simulation techniques in risk management Practical case studies, such as the pricing of exotic options; simulations of Greeks in hedging; and the use of Bayesian ideas to assess the impact of jumps, so readers can reproduce the results of the studies A related website with additional solutions to problems within the book as well as Excel VBA and S-Plus computer code for many of the examples within the book Simulation Techniques in Financial Risk Management, Second Edition is an invaluable resource for risk managers in the financial and actuarial industries as well as a useful reference for readers interested in learning how to better gauge risk and make more informed decisions. The book is also ideal for upper-undergraduate and graduate-level courses in simulation and risk management.

Network Meta Analysis For Decision Making

Author: Sofia Dias
Publisher: John Wiley & Sons
ISBN: 1118647505
Size: 19.72 MB
Format: PDF
View: 3700
Download
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question “for this pre-identified population of patients, which treatment is ‘best’?” A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Applied Mixed Models In Medicine

Author: Helen Brown
Publisher: John Wiley & Sons
ISBN: 1118778243
Size: 25.69 MB
Format: PDF, Mobi
View: 1782
Download
A fully updated edition of this key text on mixed models, focusing on applications in medical research The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott’s groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data. Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists. Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output. Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, and further material. This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.

Statistical Data Analysis Explained

Author: Clemens Reimann
Publisher: John Wiley & Sons
ISBN: 1119965284
Size: 80.30 MB
Format: PDF, Docs
View: 6469
Download
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.

Key Concepts In Environmental Chemistry

Author: Grady Hanrahan
Publisher: Academic Press
ISBN: 012374993X
Size: 26.26 MB
Format: PDF, Docs
View: 6396
Download
Key Concepts in Environmental Chemistry provides a modern and concise introduction to environmental chemistry principles and the dynamic nature of environmental systems. It offers an intense, one-semester examination of selected concepts encountered in this field of study and provides integrated tools in explaining complex chemical problems of environmental importance. Principles typically covered in more comprehensive textbooks are well integrated into general chapter topics and application areas. The goal of this textbook is to provide students with a valuable resource for learning the basic concepts of environmental chemistry from an easy to follow, condensed, application and inquiry-based perspective. Additional statistical, sampling, modeling and data analysis concepts and exercises will be introduced for greater understanding of the underlying processes of complex environmental systems and fundamental chemical principles. Each chapter will have problem-oriented exercises (with examples throughout the body of the chapter) that stress the important concepts covered and research applications/case studies from experts in the field. Research applications will be directly tied to theoretical concepts covered in the chapter. Overall, this text provides a condensed and integrated tool for student learning and covers key concepts in the rapidly developing field of environmental chemistry. Intense, one-semester approach to learning Application-based approach to learning theoretical concepts In depth analysis of field-based and in situ analytical techniques Introduction to environmental modeling

Recent Advances In Quantitative Methods In Cancer And Human Health Risk Assessment

Author: Lutz Edler
Publisher: John Wiley & Sons
ISBN: 0470857668
Size: 13.12 MB
Format: PDF, Kindle
View: 278
Download
Human health risk assessment involves the measuring of risk of exposure to disease, with a view to improving disease prevention. Mathematical, biological, statistical, and computational methods play a key role in exposure assessment, hazard assessment and identification, and dose-response modelling. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment is a comprehensive text that accounts for the wealth of new biological data as well as new biological, toxicological, and medical approaches adopted in risk assessment. It provides an authoritative compendium of state-of-the-art methods proposed and used, featuring contributions from eminent authors with varied experience from academia, government, and industry. Provides a comprehensive summary of currently available quantitative methods for risk assessment of both cancer and non-cancer problems. Describes the applications and the limitations of current mathematical modelling and statistical analysis methods (classical and Bayesian). Includes an extensive introduction and discussion to each chapter. Features detailed studies of risk assessments using biologically-based modelling approaches. Discusses the varying computational aspects of the methods proposed. Provides a global perspective on human health risk assessment by featuring case studies from a wide range of countries. Features an extensive bibliography with links to relevant background information within each chapter. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment will appeal to researchers and practitioners in public health & epidemiology, and postgraduate students alike. It will also be of interest to professionals working in risk assessment agencies.

Medical Product Safety Evaluation

Author: Jie Chen
Publisher: Chapman & Hall
ISBN: 9781466508088
Size: 50.19 MB
Format: PDF, ePub, Docs
View: 6785
Download
Medical Product Safety Evaluation: Biological Models and Statistical Methodspresents cutting-edge biological models and statistical methods that are tailored to specific objectives and data types for safety analysis and benefit-risk assessment. Some frequently encountered issues and challenges in the design and analysis of safety studies are discussed with illustrative applications and examples. The book is designed not only for biopharmaceutical professionals, such as statisticians, safety specialists, pharmacovigilance experts, and pharmacoepidemiologists, who can use the book as self-learning materials or in short courses or training programs, but also for graduate students in statistics and biomedical data science for a one-semester course. Each chapter provides supplements and problems as more readings and exercises. Jie Chenis a distinguished scientist at Merck Research Laboratories. He has more than 20 years of experience in biopharmaceutical R&D with research interest in the areas of innovative trial design, data analysis, Bayesian methods, multiregional clinical trials, data mining and machining learning methods, and medical product safety evaluation. Joseph F. Heyse is a Scientific Assistant Vice President at Merck Research Laboratories, Fellow of the ASA and AAAS, and founding editor of Statistics in Biopharmaceutical Research. He has more than 40 years of experience in pharmaceutical R&D with research interest in safety evaluation and health economics and has more than 70 publications in peer reviewed journals. He is an editor of Statistical Methods in Medical Research. Tze Leung Laiis the Ray Lyman Wilbur Professor of Statistics, and by courtesy, of Biomedical Data Science and Computational & Mathematical Engineering, and Co-director of the Center for Innovative Study Design at Stanford University. He is a Fellow of the IMS and ASA. His research interest includes sequential experimentation, adaptive design and control, change-point detection, survival analysis, time series and forecasting, multivariate analysis and machine learning, safety evaluation and monitoring. He has published 12 books and 300 articles in peer reviewed journals, and has supervised over 70 PhD theses at Columbia and Stanford Universities.