Statistical And Computational Methods In Brain Image Analysis

Author: Moo K. Chung
Publisher: CRC Press
ISBN: 1439836353
Size: 32.74 MB
Format: PDF, ePub
View: 6607
Download
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.

Image Processing For Cinema

Author: Marcelo Bertalmío
Publisher: CRC Press
ISBN: 1439899282
Size: 30.42 MB
Format: PDF, ePub, Mobi
View: 6465
Download
Image Processing for Cinema presents a detailed overview of image processing techniques that are used in practice in digital cinema. The book shows how image processing has become ubiquitous in movie-making, from shooting to exhibition. It covers all the ways in which image processing algorithms are used to enhance, restore, adapt, and convert moving images. These techniques and algorithms make the images look as good as possible while exploiting the capabilities of cameras, projectors, and displays. The author focuses on the ideas behind the methods, rather than proofs and derivations. The first part of the text presents fundamentals on optics and color. The second part explains how cameras work and details all the image processing algorithms that are applied in-camera. With an emphasis on state-of-the-art methods that are actually used in practice, the last part describes image processing algorithms that are applied offline to solve a variety of problems. The book is designed for advanced undergraduate and graduate students in applied mathematics, image processing, computer science, and related fields. It is also suitable for academic researchers and professionals in the movie industry.

Image Processing And Acquisition Using Python

Author: Ravishankar Chityala
Publisher: CRC Press
ISBN: 1466583754
Size: 54.11 MB
Format: PDF, Mobi
View: 5940
Download
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing—one of the first books to integrate these topics together. By improving readers’ knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The last part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry.

Rough Fuzzy Image Analysis

Author: Sankar K. Pal
Publisher: CRC Press
ISBN: 9781439803301
Size: 63.75 MB
Format: PDF, ePub, Mobi
View: 3583
Download
Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and Methodologies introduces the fundamentals and applications in the state of the art of rough fuzzy image analysis. In the first chapter, the distinguished editors explain how fuzzy, near, and rough sets provide the basis for the stages of pictorial pattern recognition: image transformation, feature extraction, and classification. The text then discusses hybrid approaches that combine fuzzy sets and rough sets in image analysis, illustrates how to perform image analysis using only rough sets, and describes tolerance spaces and a perceptual systems approach to image analysis. It also presents a free, downloadable implementation of near sets using the Near Set Evaluation and Recognition (NEAR) system, which visualizes concepts from near set theory. In addition, the book covers an array of applications, particularly in medical imaging involving breast cancer diagnosis, laryngeal pathology diagnosis, and brain MR segmentation. Edited by two leading researchers and with contributions from some of the best in the field, this volume fully reflects the diversity and richness of rough fuzzy image analysis. It deftly examines the underlying set theories as well as the diverse methods and applications.

Handbook Of Markov Chain Monte Carlo

Author: Steve Brooks
Publisher: CRC Press
ISBN: 1420079425
Size: 57.75 MB
Format: PDF, ePub, Docs
View: 1116
Download
Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisheries science and economics. The wide-ranging practical importance of MCMC has sparked an expansive and deep investigation into fundamental Markov chain theory. The Handbook of Markov Chain Monte Carlo provides a reference for the broad audience of developers and users of MCMC methodology interested in keeping up with cutting-edge theory and applications. The first half of the book covers MCMC foundations, methodology, and algorithms. The second half considers the use of MCMC in a variety of practical applications including in educational research, astrophysics, brain imaging, ecology, and sociology. The in-depth introductory section of the book allows graduate students and practicing scientists new to MCMC to become thoroughly acquainted with the basic theory, algorithms, and applications. The book supplies detailed examples and case studies of realistic scientific problems presenting the diversity of methods used by the wide-ranging MCMC community. Those familiar with MCMC methods will find this book a useful refresher of current theory and recent developments.

Author: Εβίνα Σιστάκου
Publisher:
ISBN: 9789602502976
Size: 13.59 MB
Format: PDF, ePub, Mobi
View: 3966
Download