Spatial Statistics For Remote Sensing

Author: A. Stein
Publisher: Springer Science & Business Media
ISBN: 0306476479
Size: 42.25 MB
Format: PDF, Kindle
View: 2557
Download
This book is a collection of papers on spatial statistics for remote sensing. The book emerges from a study day that was organized in 1996 at the International Institute for Aerospace Survey and Earth Sciences, ITC, in Enschede, The Netherlands. It was by several means a memorable event. The beautiful new building, according to a design by the famous modern Dutch architect Max van Huet was just opened, and this workshop was the first to take place there. Of course, much went wrong during the workshop, in particular as the newest electronic equipment regularly failed. But the workshop attrackted more than hundred attendants, and was generally well received. The results of the workshop have been published in Stein et al. (1998). The aim of the workshop was to address issues of spatial statistics for remote sensing. The ITC has a long history on collecting and analyzing satellite and other remote sensing data, but its involvement into spatial statistics is of a more recent date. Uncertainties in remote sensing images and the large amounts of data in many spectral bands are now considered to be of such an impact that it requires a separate approach from a statistical point of view. To quote from the justification of the study day, we read: Modern communication means such as remote sensing require an advanced use of collected data. Satellites collect data with different resolution on different spectral bands.

Spatial Statistics For Remote Sensing

Author: A. Stein
Publisher: Springer Science & Business Media
ISBN: 0306476479
Size: 31.58 MB
Format: PDF, Mobi
View: 1206
Download
This book is a collection of papers on spatial statistics for remote sensing. The book emerges from a study day that was organized in 1996 at the International Institute for Aerospace Survey and Earth Sciences, ITC, in Enschede, The Netherlands. It was by several means a memorable event. The beautiful new building, according to a design by the famous modern Dutch architect Max van Huet was just opened, and this workshop was the first to take place there. Of course, much went wrong during the workshop, in particular as the newest electronic equipment regularly failed. But the workshop attrackted more than hundred attendants, and was generally well received. The results of the workshop have been published in Stein et al. (1998). The aim of the workshop was to address issues of spatial statistics for remote sensing. The ITC has a long history on collecting and analyzing satellite and other remote sensing data, but its involvement into spatial statistics is of a more recent date. Uncertainties in remote sensing images and the large amounts of data in many spectral bands are now considered to be of such an impact that it requires a separate approach from a statistical point of view. To quote from the justification of the study day, we read: Modern communication means such as remote sensing require an advanced use of collected data. Satellites collect data with different resolution on different spectral bands.

Remote Sensing Image Analysis Including The Spatial Domain

Author: Steven M. de Jong
Publisher: Springer Science & Business Media
ISBN: 9781402025600
Size: 61.46 MB
Format: PDF, Docs
View: 6597
Download
Remote Sensing image analysis is mostly done using only spectral information on a pixel by pixel basis. Information captured in neighbouring cells, or information about patterns surrounding the pixel of interest often provides useful supplementary information. This book presents a wide range of innovative and advanced image processing methods for including spatial information, captured by neighbouring pixels in remotely sensed images, to improve image interpretation or image classification. Presented methods include different types of variogram analysis, various methods for texture quantification, smart kernel operators, pattern recognition techniques, image segmentation methods, sub-pixel methods, wavelets and advanced spectral mixture analysis techniques. Apart from explaining the working methods in detail a wide range of applications is presented covering land cover and land use mapping, environmental applications such as heavy metal pollution, urban mapping and geological applications to detect hydrocarbon seeps. The book is meant for professionals, PhD students and graduates who use remote sensing image analysis, image interpretation and image classification in their work related to disciplines such as geography, geology, botany, ecology, forestry, cartography, soil science, engineering and urban and regional planning.

Remote Sensing Image Analysis Including The Spatial Domain

Author: Steven M. de Jong
Publisher: Springer Science & Business Media
ISBN: 9781402025600
Size: 31.95 MB
Format: PDF, Kindle
View: 6133
Download
Remote Sensing image analysis is mostly done using only spectral information on a pixel by pixel basis. Information captured in neighbouring cells, or information about patterns surrounding the pixel of interest often provides useful supplementary information. This book presents a wide range of innovative and advanced image processing methods for including spatial information, captured by neighbouring pixels in remotely sensed images, to improve image interpretation or image classification. Presented methods include different types of variogram analysis, various methods for texture quantification, smart kernel operators, pattern recognition techniques, image segmentation methods, sub-pixel methods, wavelets and advanced spectral mixture analysis techniques. Apart from explaining the working methods in detail a wide range of applications is presented covering land cover and land use mapping, environmental applications such as heavy metal pollution, urban mapping and geological applications to detect hydrocarbon seeps. The book is meant for professionals, PhD students and graduates who use remote sensing image analysis, image interpretation and image classification in their work related to disciplines such as geography, geology, botany, ecology, forestry, cartography, soil science, engineering and urban and regional planning.

Remote Sensing Digital Image Analysis

Author: John A. Richards
Publisher: Springer Science & Business Media
ISBN: 3642300626
Size: 78.91 MB
Format: PDF
View: 3881
Download
Remote Sensing Digital Image Analysis provides the non-specialist with an introduction to quantitative evaluation of satellite and aircraft derived remotely retrieved data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same. This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing. The presentation level is for the mathematical non-specialist. Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a level commensurate with their background. Each chapter covers the pros and cons of digital remotely sensed data, without detailed mathematical treatment of computer based algorithms, but in a manner conductive to an understanding of their capabilities and limitations. Problems conclude each chapter.

Remote Sensing

Author: Robert A. Schowengerdt
Publisher: Elsevier
ISBN: 9780080480589
Size: 44.69 MB
Format: PDF, ePub
View: 5205
Download
Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth’s surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. Remote Sensing, in its third edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standards. Dr. Schowengerdt presents an advanced unified framework and rationale that uniquely empowers the reader with the latest critical thinking skills and prerequisite knowledge needed to successfully design, develop and incorporate maintainable remote sensing solutions for real-world application. Advanced remote sensing image processing techniques such as hyperspectral image analysis, fusion of multisensor images and digital elevation model extraction from stereo imagery are discussed theoretically in terms of spectral, spatial, and geometric models. An expanded exercise section is also included at the end of each chapter allowing for the greatest level of mastery ever. Features a new lively discussion of the NASA EOS satellites, Terra and Aqua, and the commercial satellites IKONOS and Quickbird New larger format provides additional access to 32 PAGE - FULL COLOR plate insert and improved readability Additional data processing algorithms help connect and enhance the collective understanding of engineering design and remotely sensed data

Techniques For Image Processing And Classifications In Remote Sensing

Author: Robert A. Schowengerdt
Publisher: Academic Press
ISBN: 0323138551
Size: 77.78 MB
Format: PDF, Mobi
View: 6228
Download
Techniques for Image Processing and Classifications in Remote Sensing provides an introduction to the fundamentals of computer image processing and classification (commonly called ""pattern recognition"" in other applications). The book begins with a discussion of digital scanners and imagery, and two key mathematical concepts for image processing and classification—spatial filtering and statistical pattern recognition. This is followed by separate chapters on image processing and classification techniques that are widely used in the remote sensing community. The emphasis throughout is on techniques that assist in the analysis of images, not particular applications of these techniques. The book also has four appendixes, featuring a bibliography; an introduction to computer binary data representation and image data formats; a discussion of interactive image processing; and a selection of exam questions from the Image Processing Laboratory course at the University of Arizona. This book is intended for use as either a primary source in an introductory image processing course or as a supplementary text in an intermediate-level remote sensing course. The academic level addressed is upper-division undergraduate or beginning graduate, and familiarity with calculus and basic vector and matrix concepts is assumed.

Image Processing And Gis For Remote Sensing

Author: Jian Guo Liu
Publisher: John Wiley & Sons
ISBN: 1118724178
Size: 24.29 MB
Format: PDF, Docs
View: 355
Download
Following the successful publication of the 1st edition in 2009, the 2nd edition maintains its aim to provide an application-driven package of essential techniques in image processing and GIS, together with case studies for demonstration and guidance in remote sensing applications. The book therefore has a “3 in 1” structure which pinpoints the intersection between these three individual disciplines and successfully draws them together in a balanced and comprehensive manner. The book conveys in-depth knowledge of image processing and GIS techniques in an accessible and comprehensive manner, with clear explanations and conceptual illustrations used throughout to enhance student learning. The understanding of key concepts is always emphasised with minimal assumption of prior mathematical experience. The book is heavily based on the authors’ own research. Many of the author-designed image processing techniques are popular around the world. For instance, the SFIM technique has long been adopted by ASTRIUM for mass-production of their standard “Pan-sharpen” imagery data. The new edition also includes a completely new chapter on subpixel technology and new case studies, based on their recent research.

Remote Sensing Of Urban And Suburban Areas

Author: Tarek Rashed
Publisher: Springer Science & Business Media
ISBN: 9781402043857
Size: 22.13 MB
Format: PDF, Kindle
View: 3973
Download
"Remote Sensing of Urban and Suburban Areas" provides instructors with a text reference that has a logical and easy-to-follow flow of topics around which they can structure the syllabi of their urban remote sensing courses. Topics have been chosen to bridge the gap between remote sensing and urban studies through a better understanding of the science that underlies both fields. In so doing, the book includes 17 chapters written by leading international experts in respected fields to provide a balanced coverage of fundamental issues in both remote sensing and urban studies. Emphasis is placed on: theoretical and practical issues in contemporary urban studies and remote sensing; the spectral, spatial and temporal requirements of remotely sensed data in relation to various urban phenomena; methods and techniques for analyzing and integrating remotely sensed data and image processing with geographic information systems to address urban problems; and examples of applications in which applying remote sensing to tackle urban problems is deemed useful and important.

Image Processing For Remote Sensing

Author: C.H. Chen
Publisher: CRC Press
ISBN: 9781420066654
Size: 75.47 MB
Format: PDF, ePub, Mobi
View: 3254
Download
Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for improved classification with the remote sensing data, Wiener filter-based method, and other modern approaches and methods of image processing for remotely sensed data. Each chapter explores a technique for dealing with a specific remote sensing problem. The book offers physical insights on the steps for constructing various digital seismic images. The volume examines image modeling, statistical image classifiers, change detection, independent component analysis, vertex component analysis, image fusion for better classification. It explores unique topics such as accuracy assessment and information-theoretic measure of multiband images and many chapters emphasize issues with synthetic aperture radar (SAR) images. Continued development on imaging sensors creates new opportunities and challenges in image processing for remote sensing. Image Processing for Remote Sensing not only presents the most up to date developments of image processing for remote sensing but also suggests to readers the many challenging problems ahead for further study.