Solution Techniques For Elementary Partial Differential Equations

Author: Christian Constanda
Publisher: CRC Press
ISBN: 9781584882572
Size: 23.42 MB
Format: PDF, ePub
View: 2129
Download
Of the many available texts on partial differential equations (PDEs), most are too detailed and voluminous, making them daunting to many students. In sharp contrast, Solution Techniques for Elementary Partial Differential Equations is a no-frills treatment that explains completely but succinctly some of the most fundamental solution methods for PDEs. After a brief review of elementary ODE techniques and discussions on Fourier series and Sturm-Liouville problems, the author introduces the heat, Laplace, and wave equations as mathematical models of physical phenomena. He then presents a number of solution techniques and applies them to specific initial/boundary value problems for these models. Discussion of the general second order linear equation in two independent variables follows, and finally, the method of characteristics and perturbation methods are presented. Most students seem to like concise, easily digestible explanations and worked examples that let them see the techniques in action. This text offers them both. Ideally suited for independent study and classroom tested with great success, it offers a direct, streamlined route to competence in PDE solution techniques.

Solution Techniques For Elementary Partial Differential Equations Third Edition

Author: Christian Constanda
Publisher: CRC Press
ISBN: 1498704964
Size: 36.59 MB
Format: PDF, ePub, Mobi
View: 5348
Download
Solution Techniques for Elementary Partial Differential Equations, Third Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

Partial Differential Equations

Author: Thomas Hillen
Publisher: John Wiley & Sons
ISBN: 1118438434
Size: 65.34 MB
Format: PDF, ePub, Mobi
View: 3525
Download
Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Partial Differential Equations And Boundary Value Problems With Applications

Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 0821868896
Size: 46.62 MB
Format: PDF, ePub, Mobi
View: 5407
Download
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Partial Differential Equations In Action

Author: Sandro Salsa
Publisher: Springer
ISBN: 3319312383
Size: 67.10 MB
Format: PDF, ePub
View: 7303
Download
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.The third edition contains a few text and formulas revisions and new exercises.

Applied Partial Differential Equations

Author: J David Logan
Publisher: Springer
ISBN: 3319124935
Size: 76.48 MB
Format: PDF, Docs
View: 736
Download
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Elementary Applied Partial Differential Equations

Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Size: 39.86 MB
Format: PDF, Mobi
View: 834
Download
KEY BENEFIT Emphasizing physical interpretations of mathematical solutions, this book introduces applied mathematics and presents partial differential equations. KEY TOPICS Leading readers from simple exercises through increasingly powerful mathematical techniques, this book discusses hear flow and vibrating strings and membranes, for a better understand of the relationship between mathematics and physical problems. It also emphasizes problem solving and provides a thorough approach to solutions. The third edition of , Elementary Applied Partial Differential Equations; With Fourier Series and Boundary Value Problems has been revised to include a new chapter covering dispersive waves. It also includes new sections covering fluid flow past a circular cylinder; reflection and refraction of light and sound waves; the finite element method; partial differential equations with spherical geometry; eigenvalue problems with a continuous and discrete spectrum; and first-order nonlinear partial differential equations. An essential reference for any technical or mathematics professional.

Numerical Solution Of Partial Differential Equations

Author: K. W. Morton
Publisher: Cambridge University Press
ISBN: 1139443208
Size: 55.44 MB
Format: PDF, Kindle
View: 3120
Download
This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

Ordinary Differential Equations

Author: Morris Tenenbaum
Publisher: Courier Corporation
ISBN: 0486649407
Size: 54.39 MB
Format: PDF, Mobi
View: 1792
Download
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

A First Course In Differential Equations

Author: J. David Logan
Publisher: Springer
ISBN: 3319178520
Size: 40.79 MB
Format: PDF, Mobi
View: 3490
Download
The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged to utilize available software to plot many of their solutions. Solutions to even-numbered problems are available on springer.com.