Solution Techniques For Elementary Partial Differential Equations

Author: Christian Constanda
Publisher: CRC Press
ISBN: 9781584882572
Size: 34.95 MB
Format: PDF, ePub, Docs
View: 1811
Download
Of the many available texts on partial differential equations (PDEs), most are too detailed and voluminous, making them daunting to many students. In sharp contrast, Solution Techniques for Elementary Partial Differential Equations is a no-frills treatment that explains completely but succinctly some of the most fundamental solution methods for PDEs. After a brief review of elementary ODE techniques and discussions on Fourier series and Sturm-Liouville problems, the author introduces the heat, Laplace, and wave equations as mathematical models of physical phenomena. He then presents a number of solution techniques and applies them to specific initial/boundary value problems for these models. Discussion of the general second order linear equation in two independent variables follows, and finally, the method of characteristics and perturbation methods are presented. Most students seem to like concise, easily digestible explanations and worked examples that let them see the techniques in action. This text offers them both. Ideally suited for independent study and classroom tested with great success, it offers a direct, streamlined route to competence in PDE solution techniques.

Solution Techniques For Elementary Partial Differential Equations Third Edition

Author: Christian Constanda
Publisher: CRC Press
ISBN: 1498704964
Size: 70.69 MB
Format: PDF, ePub
View: 2683
Download
Solution Techniques for Elementary Partial Differential Equations, Third Edition remains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

Elementary Applied Partial Differential Equations

Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Size: 76.14 MB
Format: PDF, ePub, Docs
View: 7360
Download
KEY BENEFIT Emphasizing physical interpretations of mathematical solutions, this book introduces applied mathematics and presents partial differential equations. KEY TOPICS Leading readers from simple exercises through increasingly powerful mathematical techniques, this book discusses hear flow and vibrating strings and membranes, for a better understand of the relationship between mathematics and physical problems. It also emphasizes problem solving and provides a thorough approach to solutions. The third edition of , Elementary Applied Partial Differential Equations; With Fourier Series and Boundary Value Problems has been revised to include a new chapter covering dispersive waves. It also includes new sections covering fluid flow past a circular cylinder; reflection and refraction of light and sound waves; the finite element method; partial differential equations with spherical geometry; eigenvalue problems with a continuous and discrete spectrum; and first-order nonlinear partial differential equations. An essential reference for any technical or mathematics professional.

Solution Techniques For Elementary Partial Differential Equations Second Edition

Author: Christian Constanda
Publisher: CRC Press
ISBN: 1439811407
Size: 25.16 MB
Format: PDF
View: 6047
Download
Incorporating a number of enhancements, Solution Techniques for Elementary Partial Differential Equations, Second Edition presents some of the most important and widely used methods for solving partial differential equations (PDEs). The techniques covered include separation of variables, method of characteristics, eigenfunction expansion, Fourier and Laplace transformations, Green’s functions, perturbation methods, and asymptotic analysis. New to the Second Edition New sections on Cauchy–Euler equations, Bessel functions, Legendre polynomials, and spherical harmonics A new chapter on complex variable methods and systems of PDEs Additional mathematical models based on PDEs Examples that show how the methods of separation of variables and eigenfunction expansion work for equations other than heat, wave, and Laplace Supplementary applications of Fourier transformations The application of the method of characteristics to more general hyperbolic equations Expanded tables of Fourier and Laplace transforms in the appendix Many more examples and nearly four times as many exercises This edition continues to provide a streamlined, direct approach to developing students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that enable students to see the techniques in action. Available for qualifying instructors, the accompanying solutions manual includes full solutions to the exercises. Instructors can obtain a set of template questions for test/exam papers as well as computer-linked projector files directly from the author.

Applied Mathematical Methods For Chemical Engineers Third Edition

Author: Norman W. Loney
Publisher: CRC Press
ISBN: 1466553014
Size: 25.85 MB
Format: PDF, ePub, Docs
View: 2571
Download
Focusing on the application of mathematics to chemical engineering, Applied Mathematical Methods for Chemical Engineers addresses the setup and verification of mathematical models using experimental or other independently derived data. The book provides an introduction to differential equations common to chemical engineering, followed by examples of first-order and linear second-order ordinary differential equations. Later chapters examine Sturm–Liouville problems, Fourier series, integrals, linear partial differential equations, regular perturbation, combination of variables, and numerical methods emphasizing the method of lines with MATLAB® programming examples. Fully revised and updated, this Third Edition: Includes additional examples related to process control, Bessel Functions, and contemporary areas such as drug delivery Introduces examples of variable coefficient Sturm–Liouville problems both in the regular and singular types Demonstrates the use of Euler and modified Euler methods alongside the Runge–Kutta order-four method Inserts more depth on specific applications such as nonhomogeneous cases of separation of variables Adds a section on special types of matrices such as upper- and lower-triangular matrices Presents a justification for Fourier-Bessel series in preference to a complicated proof Incorporates examples related to biomedical engineering applications Illustrates the use of the predictor-corrector method Expands the problem sets of numerous chapters Applied Mathematical Methods for Chemical Engineers, Third Edition uses worked examples to expose several mathematical methods that are essential to solving real-world process engineering problems.

Applied Partial Differential Equations

Author: J David Logan
Publisher: Springer
ISBN: 3319124935
Size: 25.27 MB
Format: PDF, ePub
View: 6727
Download
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Handbook Of Mathematics For Engineers And Scientists

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 9781584885023
Size: 37.28 MB
Format: PDF, Kindle
View: 4400
Download
The Handbook of Mathematics for Engineers and Scientists covers the main fields of mathematics and focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. To accommodate different mathematical backgrounds, the preeminent authors outline the material in a simplified, schematic manner, avoiding special terminology wherever possible. Organized in ascending order of complexity, the material is divided into two parts. The first part is a coherent survey of the most important definitions, formulas, equations, methods, and theorems. It covers arithmetic, elementary and analytic geometry, algebra, differential and integral calculus, special functions, calculus of variations, and probability theory. Numerous specific examples clarify the methods for solving problems and equations. The second part provides many in-depth mathematical tables, including those of exact solutions of various types of equations. This concise, comprehensive compendium of mathematical definitions, formulas, and theorems provides the foundation for exploring scientific and technological phenomena.

Partial Differential Equations In Mechanics 1

Author: A.P.S. Selvadurai
Publisher: Springer Science & Business Media
ISBN: 3662040069
Size: 20.90 MB
Format: PDF, ePub, Docs
View: 6299
Download
This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Differential Equations With Applications And Historical Notes Third Edition

Author: George F. Simmons
Publisher: CRC Press
ISBN: 1498702627
Size: 25.92 MB
Format: PDF, Mobi
View: 498
Download
Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. A solutions manual is available upon qualifying course adoption. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Solutions manual available upon qualifying course adoption

Linear Partial Differential Equations For Scientists And Engineers

Author: Tyn Myint-U
Publisher: Springer Science & Business Media
ISBN: 9780817645601
Size: 63.61 MB
Format: PDF, ePub, Docs
View: 852
Download
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.