Sets And Extensions In The Twentieth Century

Publisher: Elsevier
ISBN: 0080930662
Size: 17.12 MB
Format: PDF, ePub
View: 5786
Set theory is an autonomous and sophisticated field of mathematics that is extremely successful at analyzing mathematical propositions and gauging their consistency strength. It is as a field of mathematics that both proceeds with its own internal questions and is capable of contextualizing over a broad range, which makes set theory an intriguing and highly distinctive subject. This handbook covers the rich history of scientific turning points in set theory, providing fresh insights and points of view. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in mathematics, the history of philosophy, and any discipline such as computer science, cognitive psychology, and artificial intelligence, for whom the historical background of his or her work is a salient consideration Serves as a singular contribution to the intellectual history of the 20th century Contains the latest scholarly discoveries and interpretative insights

The Foundations Of Computability Theory

Author: Borut Robič
Publisher: Springer
ISBN: 3662448084
Size: 16.43 MB
Format: PDF, ePub, Docs
View: 5799
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Logic Without Borders

Author: Åsa Hirvonen
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1614516871
Size: 65.46 MB
Format: PDF, Mobi
View: 7466
In recent years, mathematical logic has developed in many directions, the initial unity of its subject matter giving way to a myriad of seemingly unrelated areas. The articles collected here, which range from historical scholarship to recent research in geometric model theory, squarely address this development. These articles also connect to the diverse work of Väänänen, whose ecumenical approach to logic reflects the unity of the discipline.

Rigor And Structure

Author: John P. Burgess
Publisher: OUP Oxford
ISBN: 019103360X
Size: 23.86 MB
Format: PDF, Kindle
View: 698
While we are commonly told that the distinctive method of mathematics is rigorous proof, and that the special topic of mathematics is abstract structure, there has been no agreement among mathematicians, logicians, or philosophers as to just what either of these assertions means. John P. Burgess clarifies the nature of mathematical rigor and of mathematical structure, and above all of the relation between the two, taking into account some of the latest developments in mathematics, including the rise of experimental mathematics on the one hand and computerized formal proofs on the other hand. The main theses of Rigor and Structure are that the features of mathematical practice that a large group of philosophers of mathematics, the structuralists, have attributed to the peculiar nature of mathematical objects are better explained in a different way, as artefacts of the manner in which the ancient ideal of rigor is realized in modern mathematics. Notably, the mathematician must be very careful in deriving new results from the previous literature, but may remain largely indifferent to just how the results in the previous literature were obtained from first principles. Indeed, the working mathematician may remain largely indifferent to just what the first principles are supposed to be, and whether they are set-theoretic or category-theoretic or something else. Along the way to these conclusions, a great many historical developments in mathematics, philosophy, and logic are surveyed. Yet very little in the way of background knowledge on the part of the reader is presupposed.

Handbook Of Logic And Language

Author: Johan F.A.K. van Benthem
Publisher: Elsevier
ISBN: 9780444537270
Size: 33.26 MB
Format: PDF, ePub
View: 2688
The logical study of language is becoming more interdisciplinary, playing a role in fields such as computer science, artificial intelligence, cognitive science and game theory. This new edition, written by the leading experts in the field, presents an overview of the latest developments at the interface of logic and linguistics as well as a historical perspective. It is divided into three parts covering Frameworks, General Topics and Descriptive Themes. Completely revised and updated - includes over 25% new material Discusses the interface between logic and language Many of the authors are creators or active developers of the theories

Probability Theory

Author: E. T. Jaynes
Publisher: Cambridge University Press
ISBN: 1139435167
Size: 44.31 MB
Format: PDF, ePub
View: 4141
The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.

The Development Of Modern Logic

Author: Leila Haaparanta
Publisher: Oxford University Press
ISBN: 9780199722723
Size: 20.52 MB
Format: PDF, ePub
View: 2913
This edited volume presents a comprehensive history of modern logic from the Middle Ages through the end of the twentieth century. In addition to a history of symbolic logic, the contributors also examine developments in the philosophy of logic and philosophical logic in modern times. The book begins with chapters on late medieval developments and logic and philosophy of logic from Humanism to Kant. The following chapters focus on the emergence of symbolic logic with special emphasis on the relations between logic and mathematics, on the one hand, and on logic and philosophy, on the other. This discussion is completed by a chapter on the themes of judgment and inference from 1837-1936. The volume contains a section on the development of mathematical logic from 1900-1935, followed by a section on main trends in mathematical logic after the 1930s. The volume goes on to discuss modal logic from Kant till the late twentieth century, and logic and semantics in the twentieth century; the philosophy of alternative logics; the philosophical aspects of inductive logic; the relations between logic and linguistics in the twentieth century; the relationship between logic and artificial intelligence; and ends with a presentation of the main schools of Indian logic. The Development of Modern Logic includes many prominent philosophers from around the world who work in the philosophy and history of mathematics and logic, who not only survey developments in a given period or area but also seek to make new contributions to contemporary research in the field. It is the first volume to discuss the field with this breadth of coverage and depth, and will appeal to scholars and students of logic and its philosophy.

Mathematical Logic

Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 9780387942582
Size: 75.75 MB
Format: PDF, ePub, Mobi
View: 3696
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.