Reinforced Concrete Beams Columns And Frames

Author: Charles Casandjian
Publisher: John Wiley & Sons
ISBN: 1118639464
Size: 20.52 MB
Format: PDF, ePub, Mobi
View: 6168
Download
This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). Reinforced Concrete Beams, Columns and Frames – Mechanics and Design deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS). A second book, entitled Reinforced Concrete Beams, Columns and Frames – Section and Slender Member Analysis, deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Design at Serviceability Limit State (SLS). 2. Verification at Serviceability Limit State (SLS). 3. Concepts for the Design at Ultimate Limit State (ULS). 4. Bending-Curvature at Ultimate Limit State (ULS). Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering.

Reinforced Concrete

Author: J. G. MacGregor
Publisher: Scarborough, Ont. : Prentice Hall Canada
ISBN: 9780131014039
Size: 59.97 MB
Format: PDF, ePub
View: 7039
Download
This text is intended primarily for third- or fourth-year Civil Engineering students at Canadian universities. It can also be used in graduate courses. Thoroughly Canadianized, this text provides accurate, up-to-date, and comprehensive coverage of Canadian engineering design and practice. The First Canadian Edition of Reinforced Concrete has been adapted from the U.S. third edition text to reflect the Canadian concrete design code: A23.3-94 Design of Concrete Structures issued by the Canadian Standards Association. With the exception of the CPCA Concrete Design Handbook, this is the first Canadian textbook that is compatible with the current Canadian design code. (The CPCA Handbook, while used in many Canadian engineering programs, is not considered an adequate learning tool for students). In our book, the theory and practice of reinforced concrete design is explained in a systematic and clear fashion--with an abundance of step-by-step worked examples, illustrations, and diagrams. The focus is on preparing students to make the many judgement decisions required in reinforced concrete design. Lead author James MacGregor is a renowned authority on reinforced concrete design. He has been a distinguished teacher and a member of various code committees in Canada.

Design Of Concrete Structures

Author: Christian Meyer
Publisher:
ISBN:
Size: 47.42 MB
Format: PDF, Docs
View: 4892
Download
This introduction focuses on the fundamentals of the principles of concrete mechanics and design, encompassing elementary and more complicated concepts. It features an easy-to-follow yet thorough step-by-step design methodology.

Advances In Steel Structures

Author: S.L. Chan
Publisher: Elsevier
ISBN: 9780080526812
Size: 71.83 MB
Format: PDF, Mobi
View: 3928
Download
These two volumes of proceedings contain nine invited keynote papers and 130 contributed papers presented at the Third International Conference on Advances in Steel Structures (ICASS '02) held on 9-11 December 2002 in Hong Kong, China. The conference is a sequel to the First and the Second International Conferences on Advances in Steel Structures held in Hong Kong in December 1996 and 1999. The conference provides a forum for discussion and dissemination by researchers and designers of recent advances in the analysis, behaviour, design and construction of steel structures. Papers were contributed from over 18 countries around the world. They report current state-of-the art and point to future directions of structural steel research, covering a wide spectrum of topics including: beams and columns; connections; scaffolds and slender structures; cold-formed steel; composite construction; plates; shells; bridges; dynamics; impact mechanics; effects of welding; fatigue and fracture; fire performance; and analysis and design.

Basic Principles Of Concrete Structures

Author: Xianglin Gu
Publisher: Springer
ISBN: 3662485656
Size: 14.46 MB
Format: PDF, Docs
View: 5863
Download
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.

Structural Mechanics

Author: Hassan Al Nageim
Publisher: Pearson Education
ISBN: 9780582431652
Size: 39.97 MB
Format: PDF, Kindle
View: 3940
Download
Focuses on the theory of structures and design methods of structural members. This book deals with the concept of loads and their effects on structural materials and elements in terms of stress and strain. It features the design of structural elements such as beams, columns, rafters, portal frames, dome frames and gravity retaining walls.

Seismic Design Of Reinforced Concrete Buildings

Author: Jack Moehle
Publisher: McGraw Hill Professional
ISBN: 0071839453
Size: 51.79 MB
Format: PDF, Mobi
View: 4995
Download
Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations

High Performance Fiber Reinforced Cement Composites 6

Author: Gustavo J. Parra-Montesinos
Publisher: Springer Science & Business Media
ISBN: 9400724365
Size: 58.58 MB
Format: PDF, ePub
View: 167
Download
High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.

Guide To Structural Optimization

Author: Jasbir S. Arora
Publisher: Amer Society of Civil Engineers
ISBN: 9780784402207
Size: 19.71 MB
Format: PDF, ePub, Mobi
View: 836
Download
Describes the application to structural engineering of optimization methods by which engineers using computers can evaluate more alternatives and come up with a better and more cost-effective design. Most of the chapters focus on particular building elements, such as cold-formed steel beams, reinfor

Reinforced Concrete Structures Analysis And Design Second Edition

Author: David D. E. E. Fanella
Publisher: McGraw Hill Professional
ISBN: 0071847855
Size: 19.40 MB
Format: PDF, Mobi
View: 6860
Download
This comprehensive guide to reinforced concrete structures has been fully revised to cover 2014 updates to the ACI 318 Structural Concrete code Reinforced Concrete Structures: Analysis and Design, Second Edition offers clear explanations of the underlying principles behind reinforced concrete design and provides easy-to-follow analysis, design, and construction techniques. This edition has been thoroughly updated to conform to the new ACI 2014 Building Code. This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Brand-new information is included on earthquake design and detailing. Easy-to-follow design procedures and illuminating flowcharts guide you through complex code requirements. Concisely explains every provision in the 2014 ACI 318 Structural Concrete code Features a new chapter on design and detailing for earthquake effects Solved problems and real-world examples demonstrate each provision’s proper application Author has written numerous technical publications on the design of reinforced concrete and load determination