Real Analysis And Probability

Author: Robert B. Ash
Publisher: Academic Press
ISBN: 1483191427
Size: 47.47 MB
Format: PDF, ePub, Mobi
View: 3251
Download
Real Analysis and Probability provides the background in real analysis needed for the study of probability. Topics covered range from measure and integration theory to functional analysis and basic concepts of probability. The interplay between measure theory and topology is also discussed, along with conditional probability and expectation, the central limit theorem, and strong laws of large numbers with respect to martingale theory. Comprised of eight chapters, this volume begins with an overview of the basic concepts of the theory of measure and integration, followed by a presentation of various applications of the basic integration theory. The reader is then introduced to functional analysis, with emphasis on structures that can be defined on vector spaces. Subsequent chapters focus on the connection between measure theory and topology; basic concepts of probability; and conditional probability and expectation. Strong laws of large numbers are also examined, first from the classical viewpoint, and then via martingale theory. The final chapter is devoted to the one-dimensional central limit problem, paying particular attention to the fundamental role of Prokhorov's weak compactness theorem. This book is intended primarily for students taking a graduate course in probability.

Topics In Stochastic Processes

Author: Robert B. Ash
Publisher: Academic Press
ISBN: 1483191435
Size: 34.71 MB
Format: PDF, ePub
View: 952
Download
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.

Classic Problems Of Probability

Author: Prakash Gorroochurn
Publisher: John Wiley & Sons
ISBN: 1118314336
Size: 37.41 MB
Format: PDF, ePub, Docs
View: 2360
Download
Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. "A great book, one that I will certainly add to my personal library." —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level.

Examples And Problems In Mathematical Statistics

Author: Shelemyahu Zacks
Publisher: John Wiley & Sons
ISBN: 1118605837
Size: 43.71 MB
Format: PDF, ePub, Mobi
View: 3252
Download
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.

Measure Theory And Probability

Author: Malcolm Adams
Publisher: Springer Science & Business Media
ISBN: 1461207797
Size: 54.48 MB
Format: PDF, ePub
View: 6574
Download
"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association

Basic Probability Theory

Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486466280
Size: 12.53 MB
Format: PDF, Kindle
View: 7676
Download
This introduction to more advanced courses in probability and real analysis emphasizes the probabilistic way of thinking, rather than measure-theoretic concepts. Geared toward advanced undergraduates and graduate students, its sole prerequisite is calculus. Taking statistics as its major field of application, the text opens with a review of basic concepts, advancing to surveys of random variables, the properties of expectation, conditional probability and expectation, and characteristic functions. Subsequent topics include infinite sequences of random variables, Markov chains, and an introduction to statistics. Complete solutions to some of the problems appear at the end of the book.

Probability And Measure Theory

Author: Robert B. Ash
Publisher: Academic Press
ISBN: 9780120652020
Size: 70.84 MB
Format: PDF, Mobi
View: 1268
Download
Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. * Clear, readable style * Solutions to many problems presented in text * Solutions manual for instructors * Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics * No knowledge of general topology required, just basic analysis and metric spaces * Efficient organization

An Introduction To Probability And Statistics

Author: Vijay K. Rohatgi
Publisher: John Wiley & Sons
ISBN: 1118799682
Size: 31.76 MB
Format: PDF, ePub, Mobi
View: 6826
Download
A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.

Probability And Measure 3rd Ed

Author: Patrick Billingsley
Publisher: John Wiley & Sons
ISBN: 9788126517718
Size: 53.51 MB
Format: PDF
View: 7327
Download
Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes