Random Graph Dynamics

Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 1139460889
Size: 28.53 MB
Format: PDF, ePub, Docs
View: 5553
Download
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Random Graphs And Complex Networks

Author: Remco van der Hofstad
Publisher: Cambridge University Press
ISBN: 1316802310
Size: 26.14 MB
Format: PDF, Docs
View: 1580
Download
This rigorous introduction to network science presents random graphs as models for real-world networks. Such networks have distinctive empirical properties and a wealth of new models have emerged to capture them. Classroom tested for over ten years, this text places recent advances in a unified framework to enable systematic study. Designed for a master's-level course, where students may only have a basic background in probability, the text covers such important preliminaries as convergence of random variables, probabilistic bounds, coupling, martingales, and branching processes. Building on this base - and motivated by many examples of real-world networks, including the Internet, collaboration networks, and the World Wide Web - it focuses on several important models for complex networks and investigates key properties, such as the connectivity of nodes. Numerous exercises allow students to develop intuition and experience in working with the models.

Graph Theoretic Concepts In Computer Science

Author: Hans L. Bodlaender
Publisher: Springer
ISBN: 3319687050
Size: 28.61 MB
Format: PDF, Mobi
View: 1080
Download
This book constitutes the revised selected papers of the 43rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2017, held in Eindhoven, The Netherlands, in June 2017. The 31 full papers presented in this volume were carefully reviewed and selected from 71 submissions. They cover a wide range of areas, aiming at connecting theory and applications by demonstrating how graph-theoretic concepts can be applied in various areas of computer science. Another focus is on presenting recent results and on identifying and exploring promising directions of future research.

Mathematical Foundations Of Complex Networked Information Systems

Author: P.R. Kumar
Publisher: Springer
ISBN: 331916967X
Size: 58.82 MB
Format: PDF, ePub, Docs
View: 540
Download
Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

Random Networks For Communication

Author: Massimo Franceschetti
Publisher: Cambridge University Press
ISBN: 1139467697
Size: 70.12 MB
Format: PDF, ePub, Docs
View: 6448
Download
When is a random network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions - and others - when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics.

Groups Graphs And Random Walks

Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1316604403
Size: 47.73 MB
Format: PDF, ePub, Docs
View: 3651
Download
An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrdinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem.

Probability On Graphs

Author: Geoffrey Grimmett
Publisher: Cambridge University Press
ISBN: 1108542999
Size: 48.33 MB
Format: PDF, Kindle
View: 4564
Download
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Random Walks On Infinite Graphs And Groups

Author: Wolfgang Woess
Publisher: Cambridge University Press
ISBN: 9780521552929
Size: 55.35 MB
Format: PDF, ePub
View: 4873
Download
The main theme of this book is the interplay between random walks and discrete structure theory.

Random Walks And Heat Kernels On Graphs

Author: Martin T. Barlow
Publisher: Cambridge University Press
ISBN: 1107674425
Size: 32.83 MB
Format: PDF, ePub
View: 1123
Download
This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincar inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.