Quasi Least Squares Regression

Author: Justine Shults
Publisher: CRC Press
ISBN: 1420099930
Size: 18.29 MB
Format: PDF, ePub
View: 5021
Download
Drawing on the authors’ substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression—a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitudinal data, familial data, and data with multiple sources of correlation. In some settings, QLS also allows for improved analysis with an unstructured correlation matrix. Special focus is given to goodness-of-fit analysis as well as new strategies for selecting the appropriate working correlation structure for QLS and GEE. A chapter on longitudinal binary data tackles recent issues raised in the statistical literature regarding the appropriateness of semi-parametric methods, such as GEE and QLS, for the analysis of binary data; this chapter includes a comparison with the first-order Markov maximum-likelihood (MARK1ML) approach for binary data. Examples throughout the book demonstrate each topic of discussion. In particular, a fully worked out example leads readers from model building and interpretation to the planning stages for a future study (including sample size calculations). The code provided enables readers to replicate many of the examples in Stata, often with corresponding R, SAS, or MATLAB® code offered in the text or on the book’s website.

Generalized Linear Models Second Edition

Author: P. McCullagh
Publisher: CRC Press
ISBN: 9780412317606
Size: 73.39 MB
Format: PDF, Mobi
View: 2091
Download
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.

Transformation And Weighting In Regression

Author: Raymond J. Carroll
Publisher: CRC Press
ISBN: 9780412014215
Size: 64.92 MB
Format: PDF, Mobi
View: 5863
Download
This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.

Local Polynomial Modelling And Its Applications

Author: Jianqing Fan
Publisher: Routledge
ISBN: 1351434802
Size: 11.62 MB
Format: PDF, ePub, Docs
View: 3726
Download
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

Measurement Error In Nonlinear Models

Author: Raymond J. Carroll
Publisher: CRC Press
ISBN: 9780412047213
Size: 54.33 MB
Format: PDF
View: 7763
Download
This monograph provides an up-to-date discussion of analysis strategies for regression problems in which predictor variables are measured with errors. The analysis of nonlinear regression models includes generalized linear models, transform-both-sides models and quasilikelihood and variance function problems. The text concentrates on the general ideas and strategies of estimation and inference rather than being concerned with a specific problem. Measurement error occurs in many fields, such as biometry, epidemiology and economics. In particular, the book contains a large number of epidemiological examples. An outline of strategies for handling progressively more difficult problems is also provided.

Statistical Modelling In Biostatistics And Bioinformatics

Author: Gilbert MacKenzie
Publisher: Springer Science & Business Media
ISBN: 3319045792
Size: 74.72 MB
Format: PDF, Mobi
View: 1017
Download
This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and funded by the Science Foundation Ireland under its Mathematics Initiative.

Generalized Linear Models With Random Effects

Author: Youngjo Lee
Publisher: CRC Press
ISBN: 9781420011340
Size: 31.25 MB
Format: PDF
View: 6081
Download
Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors. Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of which can be run by using the code supplied on the accompanying CD, this book is beneficial to statisticians and researchers involved in the above applications as well as quality-improvement experiments and missing-data analysis.

Measurement Error In Nonlinear Models

Author: Raymond J. Carroll
Publisher: CRC Press
ISBN: 9781420010138
Size: 48.11 MB
Format: PDF, ePub
View: 7145
Download
It’s been over a decade since the first edition of Measurement Error in Nonlinear Models splashed onto the scene, and research in the field has certainly not cooled in the interim. In fact, quite the opposite has occurred. As a result, Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revamped and extensively updated to offer the most comprehensive and up-to-date survey of measurement error models currently available. What’s new in the Second Edition? · Greatly expanded discussion and applications of Bayesian computation via Markov Chain Monte Carlo techniques · A new chapter on longitudinal data and mixed models · A thoroughly revised chapter on nonparametric regression and density estimation · A totally new chapter on semiparametric regression · Survival analysis expanded into its own separate chapter · Completely rewritten chapter on score functions · Many more examples and illustrative graphs · Unique data sets compiled and made available online In addition, the authors expanded the background material in Appendix A and integrated the technical material from chapter appendices into a new Appendix B for convenient navigation. Regardless of your field, if you’re looking for the most extensive discussion and review of measurement error models, then Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition is your ideal source.

Sufficient Dimension Reduction

Author: Bing Li
Publisher: CRC Press
ISBN: 1498704484
Size: 18.70 MB
Format: PDF, Mobi
View: 4616
Download
Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.

The Theory Of The Design Of Experiments

Author: D.R. Cox
Publisher: CRC Press
ISBN: 1420035835
Size: 30.35 MB
Format: PDF, Docs
View: 5927
Download
Why study the theory of experiment design? Although it can be useful to know about special designs for specific purposes, experience suggests that a particular design can rarely be used directly. It needs adaptation to accommodate the circumstances of the experiment. Successful designs depend upon adapting general theoretical principles to the special constraints of individual applications. Written for a general audience of researchers across the range of experimental disciplines, The Theory of the Design of Experiments presents the major topics associated with experiment design, focusing on the key concepts and the statistical structure of those concepts. The authors keep the level of mathematics elementary, for the most part, and downplay methods of data analysis. Their emphasis is firmly on design, but appendices offer self-contained reviews of algebra and some standard methods of analysis. From their development in association with agricultural field trials, through their adaptation to the physical sciences, industry, and medicine, the statistical aspects of the design of experiments have become well refined. In statistics courses of study, however, the design of experiments very often receives much less emphasis than methods of analysis. The Theory of the Design of Experiments fills this potential gap in the education of practicing statisticians, statistics students, and researchers in all fields.