Quantum Triangulations

Author: Mauro Carfora
Publisher: Springer Science & Business Media
ISBN: 3642244394
Size: 66.93 MB
Format: PDF
View: 3508
Download
Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Quantum Invariants Of Knots And 3 Manifolds

Author: Vladimir G. Turaev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110435225
Size: 54.33 MB
Format: PDF, ePub
View: 4814
Download
The third edition of this monograph provides a systematic treatment of topological quantum field theories in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of fundamental algebraic and topological concepts that emerged in this theory.

Quantum Triangulations

Author: Mauro Carfora
Publisher: Springer
ISBN: 3319679376
Size: 25.40 MB
Format: PDF, ePub
View: 2247
Download
This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involved clear. This second edition further emphasizes the essential role that triangulations play in modern mathematical physics, with a new and highly detailed chapter on the geometry of the dilatonic non-linear sigma model and its subtle and many-faceted connection with Ricci flow theory. This connection is treated in depth, pinpointing both the mathematical and physical aspects of the perturbative embedding of the Ricci flow in the renormalization group flow of non-linear sigma models. The geometry of the dilaton field is discussed from a novel standpoint by using polyhedral manifolds and Riemannian metric measure spaces, emphasizing their role in connecting non-linear sigma models’ effective action to Perelman’s energy-functional. No other published account of this matter is so detailed and informative. This new edition also features an expanded appendix on Riemannian geometry, and a rich set of new illustrations to help the reader grasp the more difficult points of the theory. The book offers a valuable guide for all mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Mirror Symmetry And Algebraic Geometry

Author: David A. Cox
Publisher: American Mathematical Soc.
ISBN: 082182127X
Size: 10.30 MB
Format: PDF, ePub, Docs
View: 2610
Download
Mathematicians wanting to get into the field ... will find a very well written and encyclopaedic account of the mathematics which was needed in, and was developed from, what now might be termed classical mirror symmetry. --Bulletin of the LMS The book is highly recommended for everyone who wants to learn about the fascinating recent interplay between physics and mathematics. --Mathematical Reviews Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is a completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem.

Physics Geometry And Topology

Author: H.C. Lee
Publisher: Springer Science & Business Media
ISBN: 1461538025
Size: 10.77 MB
Format: PDF, Docs
View: 122
Download
The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen tre, Banff, Albert, Canada. It was a combination of two venues: a summer school in the annual series of Summer School in Theoretical Physics spon sored by the Theoretical Physics Division, Canadian Association of Physi cists, and a NATO Advanced Study Institute. The Organizing Committee for the present school was composed of G. Kunstatter (University of Winnipeg), H.C. Lee (Chalk River Laboratories and University of Western Ontario), R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon Tyne) and Y.S. Wu (University of Utah). Thanks to the group of lecturers (see Contents) and the timeliness of the courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was popular from the very outset. The number of applications outstripped the 90 places of accommodation reserved at the Banff Centre soon after the school was announced. As the eventual total number of participants was increased to 170, it was still necessary to tum away many deserving applicants. In accordance with the spirit of the school, the geometrical and topologi cal properties in each of the wide ranging topics covered by the lectures were emphasized. A recurring theme in a number of the lectures is the Yang-Baxter relation which characterizes a very large class of integrable systems including: many state models, two-dimensional conformal field theory, quantum field theory and quantum gravity in 2 + I dimensions.

Advanced Quantum Mechanics

Author: Rainer Dick
Publisher: Springer
ISBN: 3319256750
Size: 24.23 MB
Format: PDF, ePub, Mobi
View: 7508
Download
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition a mplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes. Quantization is first discussed for the Schrödinger field before the relativistic Maxwell, Klein-Gordon and Dirac fields are quantized. Quantized Schrödinger field theory is not only important for condensed matter physics and materials science, but also provides the easiest avenue to general field quantization and is therefore also useful for students with an interest in nuclear and particle physics. The quantization of the Maxwell field is performed in Coulomb gauge. This is the appropriate and practically most useful quantization procedure in condensed matter physics, chemistry, and materials science because it naturally separates the effects of Coulomb interactions, exchange interactions, and photon scattering. The appendices contain additional material that is usually not found in standard quantum mechanics textbooks, including a completeness proof for eigenfunctions of one-dimensional Sturm-Liouville problems, logarithms of matrices, and Green’s functions in different dimensions.

Beyond Measure

Author: J. E. Baggott
Publisher: Oxford University Press on Demand
ISBN: 9780198525363
Size: 47.58 MB
Format: PDF, Docs
View: 3562
Download
Quantum theory is one of the most important and successful theories of modern physical science. A fact all the more remarkable because quatum theory is a theory that few understand. Most academic textbooks on the subject are written for specialists, filled with complex jargon and dense mathematics. In contrast there are many popular presentations of the inherent 'weirdness' of the quantum world that are light on jargon and contain no mathematics.Together these presentations serve tocreate the impression that there are two theories - the 'serious, one and the 'wierd' one. Baggott successfully bridges the gulf between these presentations by grounding the discussion of the theory's profound problems directly in its mathematical formalism in a way that under-graduate students and interested individuals can follow.

Mirror Symmetry

Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Size: 72.76 MB
Format: PDF, ePub
View: 5790
Download
Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar Vafa invariants. This book aims to give a single, cohesive treatment of mirror symmetry from both the mathematical and physical viewpoint. Parts 1 and 2 develop the necessary mathematical and physical background ``from scratch,'' and are intended for readers trying to learn across disciplines. The treatment is focussed, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topics in mirror symmetry, including the role of D-branes in the context of mirror symmetry, and some of their applications in physics and mathematics: topological strings and large $N$ Chern-Simons theory; geometric engineering; mirror symmetry at higher genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the mirror phenomenon as an equivalence of categories. This book grew out of an intense, month-long course on mirror symmetry at Pine Manor College, sponsored by the Clay Mathematics Institute. The lecturers have tried to summarize this course in a coherent, unified text.

A Primer On Hilbert Space Theory

Author: Carlo Alabiso
Publisher: Springer
ISBN: 3319037137
Size: 63.85 MB
Format: PDF, Mobi
View: 7424
Download
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

New Paths Towards Quantum Gravity

Author: Bernhelm Booß-Bavnbek
Publisher: Springer
ISBN: 3642118976
Size: 78.51 MB
Format: PDF, ePub, Docs
View: 6862
Download
Aside from the obvious statement that it should be a theory capable of unifying general relativity and quantum field theory, not much is known about the true nature of quantum gravity. New ideas - and there are many of them for this is an exciting field of research - often diverge to a degree where it seems impossible to decide in which of the many possible direction(s) the ongoing developments should be further sustained. The division of the book in two (overlapping) parts reflects the duality between the physical vision and the mathematical construction. The former is represented by tutorial reviews on non-commutative geometry, on space-time discretization and renormalization and on gauge field path integrals. The latter one by lectures on cohomology, on stochastic geometry and on mathematical tools for the effective action in quantum gravity. The book will benefit everyone working or entering the field of quantum gravity research.