Probability Random Processes And Ergodic Properties

Author: Robert M. Gray
Publisher: Springer Science & Business Media
ISBN: 1475720246
Size: 61.56 MB
Format: PDF, Mobi
View: 3724
This book has been written for several reasons, not all of which are academic. This material was for many years the first half of a book in progress on information and ergodic theory. The intent was and is to provide a reasonably self-contained advanced treatment of measure theory, prob ability theory, and the theory of discrete time random processes with an emphasis on general alphabets and on ergodic and stationary properties of random processes that might be neither ergodic nor stationary. The intended audience was mathematically inc1ined engineering graduate students and visiting scholars who had not had formal courses in measure theoretic probability . Much of the material is familiar stuff for mathematicians, but many of the topics and results have not previously appeared in books. The original project grew too large and the first part contained much that would likely bore mathematicians and dis courage them from the second part. Hence I finally followed the suggestion to separate the material and split the project in two. The original justification for the present manuscript was the pragmatic one that it would be a shame to waste all the effort thus far expended. A more idealistic motivation was that the presentation bad merit as filling a unique, albeit smaIl, hole in the literature.

Ergodic Behavior Of Markov Processes

Author: Alexei Kulik
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110458713
Size: 67.21 MB
Format: PDF, ePub, Mobi
View: 3919
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems

Probability Random Variables And Random Processes

Author: John J. Shynk
Publisher: John Wiley & Sons
ISBN: 1118393953
Size: 39.19 MB
Format: PDF, Mobi
View: 4270
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.

Ergodic Theory Of Random Transformations

Author: Yuri Kifer
Publisher: Springer Science & Business Media
ISBN: 146849175X
Size: 42.94 MB
Format: PDF, Mobi
View: 3585
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

Probability And Random Processes

Author: Scott L. Miller
Publisher: Academic Press
ISBN: 0123869811
Size: 40.38 MB
Format: PDF, ePub
View: 2270
Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques

Topics In Stochastic Processes

Author: Robert B. Ash
Publisher: Academic Press
ISBN: 1483191435
Size: 47.58 MB
Format: PDF, ePub
View: 2804
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.

Stationary Stochastic Processes

Author: Georg Lindgren
Publisher: CRC Press
ISBN: 1466557796
Size: 39.10 MB
Format: PDF, Kindle
View: 2263
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Foundations Of Modern Probability

Author: Olav Kallenberg
Publisher: Springer Science & Business Media
ISBN: 0387227040
Size: 19.23 MB
Format: PDF, Mobi
View: 4313
Unique for its broad and yet comprehensive coverage of modern probability theory, ranging from first principles and standard textbook material to more advanced topics. In spite of the economical exposition, careful proofs are provided for all main results. After a detailed discussion of classical limit theorems, martingales, Markov chains, random walks, and stationary processes, the author moves on to a modern treatment of Brownian motion, L=82vy processes, weak convergence, It=93 calculus, Feller processes, and SDEs. The more advanced parts include material on local time, excursions, and additive functionals, diffusion processes, PDEs and potential theory, predictable processes, and general semimartingales. Though primarily intended as a general reference for researchers and graduate students in probability theory and related areas of analysis, the book is also suitable as a text for graduate and seminar courses on all levels, from elementary to advanced. Numerous easy to more challenging exercises are provided, especially for the early chapters. From the author of "Random Measures".

Fundamentals Of Applied Probability And Random Processes

Author: Oliver Ibe
Publisher: Academic Press
ISBN: 0128010355
Size: 28.15 MB
Format: PDF, Mobi
View: 5556
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings Expands readers’ understanding of disruptive statistics in a new chapter (chapter 8) Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).