Principles Of Systems Science

Author: George E Mobus
Publisher: Springer
ISBN: 1493919202
Size: 69.94 MB
Format: PDF
View: 643
This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving

Open Systems Science

Author: Mario Tokoro
Publisher: IOS Press
ISBN: 1607504685
Size: 46.19 MB
Format: PDF, Mobi
View: 5764
Open systems science is the methodology employed to manage and solve the problems in systems whose operation involves interaction with the outside world, as opposed to being closed and complete within themselves. This new methodology was first announced at the 20th anniversary symposium of Sony CSL in 2008. Falling outside the direct scope of traditional science, an open system usually consists of multiple subsystems with varying numbers, relations and functions. Throughout the last decades, computer scientists, addressing the problems presented by globalization and the massive expansion in the application of new technologies, began to realize that open systems science could provide some of the solutions they were seeking with regard to complex and dependable systems. Starting with a chapter explaining the basic concept of open systems science, this book goes on to present the work of contributors from a variety of different disciplines, who explain how open systems science can be applied to their field. Including topics such as; biological robustness, the application of open systems methods to develop new drugs, the study of language and meaning, the interdisciplinary field of visual computing and user interfaces as the merger between the real and virtual world, this book explores the directions of science and technology in the 21st century and will be of interest to all those involved in the development and operation of complex interactive systems. IOS Press is an international science, technical and medical publisher of high-quality books for academics, scientists, and professionals in all fields. Some of the areas we publish in: -Biomedicine -Oncology -Artificial intelligence -Databases and information systems -Maritime engineering -Nanotechnology -Geoengineering -All aspects of physics -E-governance -E-commerce -The knowledge economy -Urban studies -Arms control -Understanding and responding to terrorism -Medical informatics -Computer Sciences

Complex Engineered Systems

Author: Dan Braha
Publisher: Springer
ISBN: 3540328343
Size: 14.73 MB
Format: PDF, ePub, Docs
View: 282
This book sheds light on the large-scale engineering systems that shape and guide our everyday lives. It does this by bringing together the latest research and practice defining the emerging field of Complex Engineered Systems. Understanding, designing, building and controlling such complex systems is going to be a central challenge for engineers in the coming decades. This book is a step toward addressing that challenge.

Modeling Complex Systems

Author: Nino Boccara
Publisher: Springer Science & Business Media
ISBN: 9781441965622
Size: 46.27 MB
Format: PDF, Kindle
View: 6639
This book illustrates how models of complex systems are built up and provides indispensable mathematical tools for studying their dynamics. This second edition includes more recent research results and many new and improved worked out examples and exercises.

Dynamics Of Complex Systems

Author: Yaneer Bar-yam
Publisher: Westview Press
ISBN: 9780813341217
Size: 68.83 MB
Format: PDF, ePub, Mobi
View: 1679
The study of complex systems in a unified framework has become recognized in recent years as a new scientific discipline, the ultimate in the interdisciplinary fields. Breaking down the barriers between physics, chemistry, and biology and the so-called soft sciences of psychology, sociology, economics and anthropology, this text explores the universal physical and mathematical principles that govern the emergence of complex systems from simple components. Dynamics of Complex Systems is the first text describing the modern unified study of complex systems. It is designed for upper-undergraduate/beginning graduate level students, and covers a broad range of applications in a broad array of disciplines. A central goal of this text is to develop models and modeling techniques that are useful when applied to all complex systems. This is done by adopting both analytic tools, including statistical mechanics and stochastic dynamics, and computer simulation techniques, such as cellular automata and Monte Carlo. In four sets of paired, self-contained chapters, Yaneer Bar-Yam discusses complex systems in the context of neural networks, protein folding, living organisms, and finally, human civilization itself. He explores fundamental questions about the structure, dynamics, evolution, development and quantitative complexity that apply to all complex systems. In the first chapter, mathematical foundations such as iterative maps and chaos, probability theory and random walks, thermodynamics, information and computation theory, fractals and scaling, are reviewed to enable the text to be read by students and researchers with a variety of backgrounds.

An Introduction To Complex Systems

Author: Paul Fieguth
Publisher: Springer
ISBN: 3319446061
Size: 73.19 MB
Format: PDF, Docs
View: 3614
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.

A Crude Look At The Whole

Author: John Miller
Publisher: Basic Books
ISBN: 0465073867
Size: 14.83 MB
Format: PDF, ePub, Docs
View: 5777
Imagine trying to understand a stained glass window by breaking it into pieces and examining it one shard at a time. While you could probably learn a lot about each piece, you would have no idea about what the entire picture looks like. This is reductionism—the idea that to understand the world we only need to study its pieces—and it is how most social scientists approach their work. In A Crude Look at the Whole, social scientist and economist John H. Miller shows why we need to start looking at whole pictures. For one thing, whether we are talking about stock markets, computer networks, or biological organisms, individual parts only make sense when we remember that they are part of larger wholes. And perhaps more importantly, those wholes can take on behaviors that are strikingly different from that of their pieces. Miller, a leading expert in the computational study of complex adaptive systems, reveals astounding global patterns linking the organization of otherwise radically different structures: It might seem crude, but a beehive’s temperature control system can help predict market fluctuations and a mammal’s heartbeat can help us understand the “heartbeat” of a city and adapt urban planning accordingly. From enduring racial segregation to sudden stock market disasters, once we start drawing links between complex systems, we can start solving what otherwise might be totally intractable problems. Thanks to this revolutionary perspective, we can finally transcend the limits of reductionism and discover crucial new ideas. Scientifically founded and beautifully written, A Crude Look at the Whole is a powerful exploration of the challenges that we face as a society. As it reveals, taking the crude look might be the only way to truly see.

Complexity And Postmodernism

Author: Paul Cilliers
Publisher: Routledge
ISBN: 1134743300
Size: 10.48 MB
Format: PDF, Docs
View: 5115
In Complexity and Postmodernism, Paul Cilliers explores the idea of complexity in the light of contemporary perspectives from philosophy and science. Cilliers offers us a unique approach to understanding complexity and computational theory by integrating postmodern theory (like that of Derrida and Lyotard) into his discussion. Complexity and Postmodernism is an exciting and an original book that should be read by anyone interested in gaining a fresh understanding of complexity, postmodernism and connectionism.

Systems Science

Author: Yi Lin
Publisher: CRC Press
ISBN: 1439895511
Size: 79.10 MB
Format: PDF
View: 6903
By making use of the principles of systems science, the scientific community can explain many complicated matters of the world and shed new light on unsettled problems. Each real science has its own particular methodology for not only qualitative but also quantitative analyses, so it is important to understand the organic whole of systems research with operable mathematical methods. Systems Science: Methodological Approaches presents a mathematical explanation of systems science, giving readers a complete technical formulation of different systemic laws. It enables them to use a unified methodology to attack different problems that are hard, if not impossible, for modern science to handle. Following a brief history of systems science, the book explores: Basic concepts, characteristics, properties, and classifications of general systems Nonlinear systems dynamics and the theory of catastrophe Dissipative structures and synergistics Studies of chaos, including logistic mapping, phase space reconstruction, Lyapunov exponents, and chaos of general single relation systems Different aspects and concepts of fractals, including a presentation of L systems analysis and design Complex systems and complexity, with a discussion of how the phenomena of "three" and complexity are related, and how various cellular automata can be constructed to generate useful simulations and figurative patterns Complex adaptive systems and open complex giant systems, with introduction of the yoyo model and practical applications Complex networks and related concepts and methods The book concludes with several case studies that demonstrate how various concepts and the logic of systems can be practically applied to resolve real-life problems, such as the prediction of natural disasters. The book will be useful in directing future research and applications of systems science on a commonly accepted platform and playground.

Constructal Law And The Unifying Principle Of Design

Author: Luiz Rocha
Publisher: Springer
ISBN: 1461450497
Size: 22.42 MB
Format: PDF, Mobi
View: 580
Design happens everywhere, whether in animate objects (e.g., dendritic lung structures, bacterial colonies, and corals), inanimate patterns (river basins, beach slope, and dendritic crystals), social dynamics (pedestrian traffic flows), or engineered systems (heat dissipation in electronic circuitry). This “design in nature” often takes on remarkably similar patterns, which can be explained under one unifying Constructal Law. This book explores the unifying power of the Constructal Law and its applications in all domains of design generation and evolution, ranging from biology and geophysics to globalization, energy, sustainability, and security. The Constructal Law accounts for the universal tendency of flow systems to morph into evolving configurations that provide greater and easier access over time. The Constructal Law resolves the many and contradictory ad hoc statements of “optimality”, end design, and destiny in nature, such as minimum and maximum entropy production and minimum and maximum flow resistance, and also explains the designs that are observed and copied in biomimetics. Constructal Law and the Unifying Principle of Design covers the fundamentals of Constructal Theory and Design, as well as presenting a variety of state-of-the-art applications. Experts from the biological, physical and social sciences demonstrate the unification of all design phenomena in nature, and apply this knowledge to novel designs in modern engineering, such as vascularization for self-healing and self-cooling materials for aircraft, and tree fins and cavities for heat transfer enhancement.