Principles Of Data Integration

Author: AnHai Doan
Publisher: Elsevier
ISBN: 0124160441
Size: 17.36 MB
Format: PDF, Kindle
View: 6214
Download
How do you approach answering queries when your data is stored in multiple databases that were designed independently by different people? This is first comprehensive book on data integration and is written by three of the most respected experts in the field. This book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. Data integration is the problem of answering queries that span multiple data sources (e.g., databases, web pages). Data integration problems surface in multiple contexts, including enterprise information integration, query processing on the Web, coordination between government agencies and collaboration between scientists. In some cases, data integration is the key bottleneck to making progress in a field. The authors provide a working knowledge of data integration concepts and techniques, giving you the tools you need to develop a complete and concise package of algorithms and applications. *Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand. *Enables you to build your own algorithms and implement your own data integration applications *Companion website with numerous project-based exercises and solutions and slides. Links to commercially available software allowing readers to build their own algorithms and implement their own data integration applications. Facebook page for reader input during and after publication.

Principles Of Data Integration

Author: AnHai Doan
Publisher: Elsevier
ISBN: 0123914795
Size: 42.98 MB
Format: PDF, ePub, Mobi
View: 1180
Download
How do you approach answering queries when your data is stored in multiple databases that were designed independently by different people? This is first comprehensive book on data integration and is written by three of the most respected experts in the field. This book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. Data integration is the problem of answering queries that span multiple data sources (e.g., databases, web pages). Data integration problems surface in multiple contexts, including enterprise information integration, query processing on the Web, coordination between government agencies and collaboration between scientists. In some cases, data integration is the key bottleneck to making progress in a field. The authors provide a working knowledge of data integration concepts and techniques, giving you the tools you need to develop a complete and concise package of algorithms and applications. Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand Enables you to build your own algorithms and implement your own data integration applications

Managing Data In Motion

Author: April Reeve
Publisher: Newnes
ISBN: 0123977916
Size: 56.38 MB
Format: PDF, Docs
View: 6764
Download
Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types Explains, in non-technical terms, the architecture and components required to perform data integration Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"

Principles Of Big Data

Author: Jules J. Berman
Publisher: Newnes
ISBN: 0124047246
Size: 43.99 MB
Format: PDF, ePub
View: 7776
Download
Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. Learn general methods for specifying Big Data in a way that is understandable to humans and to computers Avoid the pitfalls in Big Data design and analysis Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources

Data Integration Blueprint And Modeling

Author: Anthony David Giordano
Publisher: Pearson Education
ISBN: 0137085281
Size: 75.89 MB
Format: PDF, Mobi
View: 1693
Download
Making Data Integration Work: How to Systematically Reduce Cost, Improve Quality, and Enhance Effectiveness Today’s enterprises are investing massive resources in data integration. Many possess thousands of point-to-point data integration applications that are costly, undocumented, and difficult to maintain. Data integration now accounts for a major part of the expense and risk of typical data warehousing and business intelligence projects--and, as businesses increasingly rely on analytics, the need for a blueprint for data integration is increasing now more than ever. This book presents the solution: a clear, consistent approach to defining, designing, and building data integration components to reduce cost, simplify management, enhance quality, and improve effectiveness. Leading IBM data management expert Tony Giordano brings together best practices for architecture, design, and methodology, and shows how to do the disciplined work of getting data integration right. Mr. Giordano begins with an overview of the “patterns” of data integration, showing how to build blueprints that smoothly handle both operational and analytic data integration. Next, he walks through the entire project lifecycle, explaining each phase, activity, task, and deliverable through a complete case study. Finally, he shows how to integrate data integration with other information management disciplines, from data governance to metadata. The book’s appendices bring together key principles, detailed models, and a complete data integration glossary. Coverage includes Implementing repeatable, efficient, and well-documented processes for integrating data Lowering costs and improving quality by eliminating unnecessary or duplicative data integrations Managing the high levels of complexity associated with integrating business and technical data Using intuitive graphical design techniques for more effective process and data integration modeling Building end-to-end data integration applications that bring together many complex data sources

Big Data Integration

Author: Xin Luna Dong
Publisher: Morgan & Claypool Publishers
ISBN: 1627052240
Size: 15.62 MB
Format: PDF, ePub, Docs
View: 5144
Download
The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, and data-driven decision making is sweeping through all aspects of society. Since the value of data explodes when it can be linked and fused with other data, addressing the big data integration (BDI) challenge is critical to realizing the promise of big data. BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and veracity. First, not only can data sources contain a huge volume of data, but also the number of data sources is now in the millions. Second, because of the rate at which newly collected data are made available, many of the data sources are very dynamic, and the number of data sources is also rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of data provided. This book explores the progress that has been made by the data integration community on the topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced by big data integration. Each of these topics is covered in a systematic way: first starting with a quick tour of the topic in the context of traditional data integration, followed by a detailed, example-driven exposition of recent innovative techniques that have been proposed to address the BDI challenges of volume, velocity, variety, and veracity. Finally, it presents merging topics and opportunities that are specific to BDI, identifying promising directions for the data integration community.

Principles Of Database Management

Author: Wilfried Lemahieu
Publisher: Cambridge University Press
ISBN: 1107186129
Size: 28.63 MB
Format: PDF, ePub
View: 2203
Download
Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.

Enterprise Integration Patterns

Author: Gregor Hohpe
Publisher: Addison-Wesley
ISBN: 0133065103
Size: 33.10 MB
Format: PDF
View: 4886
Download
Enterprise Integration Patterns provides an invaluable catalog of sixty-five patterns, with real-world solutions that demonstrate the formidable of messaging and help you to design effective messaging solutions for your enterprise. The authors also include examples covering a variety of different integration technologies, such as JMS, MSMQ, TIBCO ActiveEnterprise, Microsoft BizTalk, SOAP, and XSL. A case study describing a bond trading system illustrates the patterns in practice, and the book offers a look at emerging standards, as well as insights into what the future of enterprise integration might hold. This book provides a consistent vocabulary and visual notation framework to describe large-scale integration solutions across many technologies. It also explores in detail the advantages and limitations of asynchronous messaging architectures. The authors present practical advice on designing code that connects an application to a messaging system, and provide extensive information to help you determine when to send a message, how to route it to the proper destination, and how to monitor the health of a messaging system. If you want to know how to manage, monitor, and maintain a messaging system once it is in use, get this book.

Attribution Principles For Data Integration

Author: Thomas Yupoo Lee
Publisher:
ISBN:
Size: 34.61 MB
Format: PDF, Kindle
View: 6512
Download
(cont.) The policy perspective encompasses not only what and where but also integration architectures and the relationships between data providers and users. Information technologies separate the processes and products of data gathering from data selection and presentation. Where the latter is addressed by copyright, the former is not addressed at all. Based upon two traditional, legal-economic frameworks, the asymmetric Prisoner's Dilemma and Entitlement Theory, we argue for a policy of misappropriation to support integration and attribution for data.

Developing High Quality Data Models

Author: Matthew West
Publisher: Elsevier
ISBN: 9780123751072
Size: 55.38 MB
Format: PDF, Mobi
View: 2396
Download
Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates Develops ideas for creating consistent approaches to high quality data models