Practical Propensity Score Methods Using R

Author: Walter Leite
Publisher: SAGE Publications
ISBN: 1483313395
Size: 22.52 MB
Format: PDF, Mobi
View: 949
Download
Practical Propensity Score Methods Using R by Walter Leite is a practical book that uses a step-by-step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. With a comparison of both well-established and cutting-edge propensity score methods, the text highlights where solid guidelines exist to support best practices and where there is scarcity of research. Readers will find that this scaffolded approach to R and the book’s free online resources help them apply the text’s concepts to the analysis of their own data.

Practical Propensity Score Methods Using R

Author: Walter Leite
Publisher: SAGE Publications
ISBN: 1483324842
Size: 53.53 MB
Format: PDF, Docs
View: 6050
Download
Practical Propensity Score Methods Using R by Walter Leite is a practical book that uses a step-by-step analysis of realistic examples to help students understand the theory and code for implementing propensity score analysis with the R statistical language. With a comparison of both well-established and cutting-edge propensity score methods, the text highlights where solid guidelines exist to support best practices and where there is scarcity of research. Readers will find that this scaffolded approach to R and the book’s free online resources help them apply the text’s concepts to the analysis of their own data.

Propensity Score Analysis

Author: Shenyang Guo
Publisher: SAGE
ISBN: 1452235007
Size: 57.84 MB
Format: PDF, Kindle
View: 3049
Download
Fully updated to reflect the most recent changes in the field, the Second Edition of Propensity Score Analysis provides an accessible, systematic review of the origins, history, and statistical foundations of propensity score analysis, illustrating how it can be used for solving evaluation and causal-inference problems. With a strong focus on practical applications, the authors explore various strategies for employing PSA, discuss the use of PSA with alternative types of data, and delineate the limitations of PSA under a variety of constraints. Unlike existing textbooks on program evaluation and causal inference, this book delves into statistical concepts, formulas, and models within the context of a robust and engaging focus on application.

Propensity Score Analysis

Author: Wei Pan
Publisher: Guilford Publications
ISBN: 1462519490
Size: 61.99 MB
Format: PDF, Docs
View: 164
Download
This book is designed to help researchers better design and analyze observational data from quasi-experimental studies and improve the validity of research on causal claims. It provides clear guidance on the use of different propensity score analysis (PSA) methods, from the fundamentals to complex, cutting-edge techniques. Experts in the field introduce underlying concepts and current issues and review relevant software programs for PSA. The book addresses the steps in propensity score estimation, including the use of generalized boosted models, how to identify which matching methods work best with specific types of data, and the evaluation of balance results on key background covariates after matching. Also covered are applications of PSA with complex data, working with missing data, controlling for unobserved confounding, and the extension of PSA to prognostic score analysis for causal inference. User-friendly features include statistical program codes and application examples. Data and software code for the examples are available at the companion website (www.guilford.com/pan-materials).

Longitudinal Data Analysis For The Behavioral Sciences Using R

Author: Jeffrey D. Long
Publisher: SAGE
ISBN: 1412982685
Size: 35.67 MB
Format: PDF, Mobi
View: 2281
Download
This book is unique in its focus on showing students in the behavioral sciences how to analyze longitudinal data using R software. The book focuses on application, making it practical and accessible to students in psychology, education, and related fields, who have a basic foundation in statistics. It provides explicit instructions in R computer programming throughout the book, showing students exactly how a specific analysis is carried out and how output is interpreted.

Using Propensity Scores In Quasi Experimental Designs

Author: William M. Holmes
Publisher: SAGE Publications
ISBN: 148332124X
Size: 65.26 MB
Format: PDF, Kindle
View: 3780
Download
Using Propensity Scores in Quasi-Experimental Designs, by William M. Holmes, examines how propensity scores can be used to reduce bias with different kinds of quasi-experimental designs and to fix or improve broken experiments. Requiring minimal use of matrix and vector algebra, the book covers the causal assumptions of propensity score estimates and their many uses, linking these uses with analysis appropriate for different designs. Thorough coverage of bias assessment, propensity score estimation, and estimate improvement is provided, along with graphical and statistical methods for this process. Applications are included for analysis of variance and covariance, maximum likelihood and logistic regression, two-stage least squares, generalized linear regression, and general estimation equations. The examples use public data sets that have policy and programmatic relevance across a variety of disciplines.

Analysis Of Observational Health Care Data Using Sas

Author: Douglas E. Faries
Publisher: SAS Institute
ISBN: 9781607644248
Size: 53.70 MB
Format: PDF, Docs
View: 6907
Download
This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.

Design Of Observational Studies

Author: Paul R. Rosenbaum
Publisher: Springer Science & Business Media
ISBN: 1441912134
Size: 43.46 MB
Format: PDF, ePub, Mobi
View: 3336
Download
An observational study is an empiric investigation of effects caused by treatments when randomized experimentation is unethical or infeasible. Observational studies are common in most fields that study the effects of treatments on people, including medicine, economics, epidemiology, education, psychology, political science and sociology. The quality and strength of evidence provided by an observational study is determined largely by its design. Design of Observational Studies is both an introduction to statistical inference in observational studies and a detailed discussion of the principles that guide the design of observational studies. Design of Observational Studies is divided into four parts. Chapters 2, 3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas discussed in Rosenbaum’s Observational Studies (also published by Springer) but in a less technical fashion. Part II discusses the practical aspects of using propensity scores and other tools to create a matched comparison that balances many covariates. Part II includes a chapter on matching in R. In Part III, the concept of design sensitivity is used to appraise the relative ability of competing designs to distinguish treatment effects from biases due to unmeasured covariates. Part IV discusses planning the analysis of an observational study, with particular reference to Sir Ronald Fisher’s striking advice for observational studies, "make your theories elaborate." The second edition of his book, Observational Studies, was published by Springer in 2002.

Matched Sampling For Causal Effects

Author: Donald B. Rubin
Publisher: Cambridge University Press
ISBN: 1139458507
Size: 27.11 MB
Format: PDF, ePub
View: 6758
Download
Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.