New Developments In Categorical Data Analysis For The Social And Behavioral Sciences

Author: L. Andries van der Ark
Publisher: Psychology Press
ISBN: 1135704848
Size: 19.47 MB
Format: PDF
View: 680
Categorical data are quantified as either nominal variables--distinguishing different groups, for example, based on socio-economic status, education, and political persuasion--or ordinal variables--distinguishing levels of interest, such as the preferred politician or the preferred type of punishment for committing burglary. This new book is a collection of up-to-date studies on modern categorical data analysis methods, emphasizing their application to relevant and interesting data sets. This volume concentrates on latent class analysis and item response theory. These methods use latent variables to explain the relationships among observed categorical variables. Latent class analysis yields the classification of a group of respondents according to their pattern of scores on the categorical variables. This provides insight into the mechanisms producing the data and allows the estimation of factor structures and regression models conditional on the latent class structure. Item response theory leads to the identification of one or more ordinal or interval scales. In psychological and educational testing these scales are used for individual measurement of abilities and personality traits. The focus of this volume is applied. After a method is explained, the potential of the method for analyzing categorical data is illustrated by means of a real data example to show how it can be used effectively for solving a real data problem. These methods are accessible to researchers not trained explicitly in applied statistics. This volume appeals to researchers and advanced students in the social and behavioral sciences, including social, developmental, organizational, clinical and health psychologists, sociologists, educational and marketing researchers, and political scientists. In addition, it is of interest to those who collect data on categorical variables and are faced with the problem of how to analyze such variables--among themselves or in relation to metric variables.

The Sage Handbook Of Quantitative Methodology For The Social Sciences

Author: David Kaplan
Publisher: SAGE
ISBN: 0761923594
Size: 69.34 MB
Format: PDF, Docs
View: 2407
The SAGE Handbook of Quantitative Methodology for the Social Sciences is the definitive reference for teachers, students, and researchers of quantitative methods in the social sciences, as it provides a comprehensive overview of the major techniques used in the field. The contributors, top methodologists and researchers, have written about their areas of expertise in ways that convey the utility of their respective techniques, but, where appropriate, they also offer a fair critique of these techniques. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter and makes this an invaluable resource.

Multilevel Modeling Of Categorical Outcomes Using Ibm Spss

Author: Ronald H Heck
Publisher: Routledge
ISBN: 1136672346
Size: 58.46 MB
Format: PDF
View: 6418
This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.

Contemporary Issues In Exploratory Data Mining In The Behavioral Sciences

Author: John J. McArdle
Publisher: Routledge
ISBN: 1135044090
Size: 51.25 MB
Format: PDF, Docs
View: 4932
This book reviews the latest techniques in exploratory data mining (EDM) for the analysis of data in the social and behavioral sciences to help researchers assess the predictive value of different combinations of variables in large data sets. Methodological findings and conceptual models that explain reliable EDM techniques for predicting and understanding various risk mechanisms are integrated throughout. Numerous examples illustrate the use of these techniques in practice. Contributors provide insight through hands-on experiences with their own use of EDM techniques in various settings. Readers are also introduced to the most popular EDM software programs. A related website at color versions of the book’s figures, a supplemental paper to chapter 3, and R commands for some chapters. The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed. Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include: selection to college based on risky prior academic profiles the decline of cognitive abilities in older persons global perceptions of stress in adulthood predicting mortality from demographics and cognitive abilities risk factors during pregnancy and the impact on neonatal development Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.

Categorical Data Analysis For The Behavioral And Social Sciences

Author: Razia Azen
Publisher: Routledge
ISBN: 1136914234
Size: 36.37 MB
Format: PDF, Mobi
View: 796
Featuring a practical approach with numerous examples, this book focuses on helping the reader develop a conceptual, rather than technical, understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analyses and emphasize specific research questions that can be addressed by each analytic procedure so that readers are able to address the research questions they wish to answer. To achieve this goal, the authors: Review the theoretical implications and assumptions underlying each of the procedures Present each concept in general terms and illustrate each with a practical example Demonstrate the analyses using SPSS and SAS and show the interpretation of the results provided by these programs. A "Look Ahead" section at the beginning of each chapter provides an overview of the material covered so that the reader knows what to expect. This is followed by one or more research questions that can be addressed using the procedure(s) covered in the chapter. A theoretical presentation of the material is provided and illustrated using realistic examples from the behavioral and social sciences. To further enhance accessibility, the new procedures introduced in the book are explicitly related to analytic procedures covered in earlier statistics courses, such as ANOVA and linear regression. Throughout each chapter the authors use practical examples to demonstrate how to obtain and interpret statistical output in both SPSS and SAS. Their emphasis on the relationship between the initial research question, the use of the software to carry out the analysis, and the interpretation of the output as it relates to the initial research question, allows readers to easily apply the material to their own research. The data sets for executing chapter examples using SAS Version 9.1.3 and/or IBM SPSS Version 18 are available on a book specific web site. These data sets and syntax allow readers to quickly run the programs and obtain the appropriate output. The book also includes both conceptual and analytic end-of-chapter exercises to assist instructors and students in evaluating the understanding of the material covered in each chapter. This book covers the most commonly used categorical data analysis procedures. It is written for those without an extensive mathematical background, and is ideal for graduate courses in categorical data analysis or cross-classified data analysis taught in departments of psychology, human development & family studies, sociology, education, and business. Researchers in these disciplines interested in applying these procedures to their own research will appreciate this book’s accessible approach.

Longitudinal Data Analysis

Author: Jason Newsom
Publisher: Routledge
ISBN: 1136705473
Size: 26.12 MB
Format: PDF, ePub
View: 3102
First Published in 2012. Routledge is an imprint of Taylor & Francis, an informa company.

Writing Up Quantitative Research In The Social And Behavioral Sciences

Author: Marianne Fallon
ISBN: 9789463006071
Size: 79.86 MB
Format: PDF, Kindle
View: 6366
The "Teaching Writing" series publishes user-friendly writing guides penned by authors with publishing records in their subject matter. Infused with multidisciplinary examples, humor, and a healthy dose of irreverence, Fallon helps emerging researchers successfully navigate the intellectual and emotional challenges of writing quantitative research reports. After reinforcing foundations in methodology, statistics, and writing in the first section of the book, emerging researchers work through a series of questions to construct their research report. The final section contains sample papers generated by undergraduates illustrating three major forms of quantitative research - primary data collection, secondary data analysis, and content analysis. "Writing up Quantitative Research in the Social and Behavioral Sciences" is appropriate for research methods classes in communication, criminology or criminal justice, economics, education, political science, psychological science, social work, and sociology. Individual students and novice researchers can also read the book as a supplement to any course or research experience that requires writing up quantitative data. "Fallon brings much-needed accessibility to the daunting world of quantitative methods. Filled with contemporary references to pop culture ... key concepts are creatively introduced." - Diana Cohen, Associate Professor of Political Science, Central Connecticut State University "This book covers the 'how to' of writing research projects in a highly engaging manner. Graduate students who are preparing to work on their master's thesis will get a lot out of this book." - Damon Mitchell, Professor of Criminology and Criminal Justice, Central Connecticut State University ""Writing up Quantitative Research in the Social and Behavioral Sciences" is not your typical book. It is a MUST HAVE handbook for students in the social and behavioral sciences ..." - Carolyn Fallahi, Professor of Psychological Science, Central Connecticut State University "Kudos to Fallon for writing a very thorough and readable foundational text for beginning researchers!" - Linda Behrendt, Associate Professor of Human Development and Family Studies, Indiana State University

Multilevel Analysis

Author: Joop J. Hox
Publisher: Routledge
ISBN: 1317308670
Size: 25.15 MB
Format: PDF, ePub, Mobi
View: 4419
Applauded for its clarity, this accessible introduction helps readers apply multilevel techniques to their research. The book also includes advanced extensions, making it useful as both an introduction for students and as a reference for researchers. Basic models and examples are discussed in nontechnical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines including psychology, education, public health, and sociology. Readers are introduced to a general framework on multilevel modeling which covers both observed and latent variables in the same model, while most other books focus on observed variables. In addition, Bayesian estimation is introduced and applied using accessible software.

Latent Class And Latent Transition Analysis

Author: Linda M. Collins
Publisher: John Wiley & Sons
ISBN: 111821076X
Size: 71.18 MB
Format: PDF, ePub, Docs
View: 4290
A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a "Points to Remember" section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.

Statistics And Causality

Author: Wolfgang Wiedermann
Publisher: John Wiley & Sons
ISBN: 1118947053
Size: 49.34 MB
Format: PDF
View: 4949
A one-of-a-kind guide to identifying and dealing with modern statistical developments in causality Written by a group of well-known experts, Statistics and Causality: Methods for Applied Empirical Research focuses on the most up-to-date developments in statistical methods in respect to causality. Illustrating the properties of statistical methods to theories of causality, the book features a summary of the latest developments in methods for statistical analysis of causality hypotheses. The book is divided into five accessible and independent parts. The first part introduces the foundations of causal structures and discusses issues associated with standard mechanistic and difference-making theories of causality. The second part features novel generalizations of methods designed to make statements concerning the direction of effects. The third part illustrates advances in Granger-causality testing and related issues. The fourth part focuses on counterfactual approaches and propensity score analysis. Finally, the fifth part presents designs for causal inference with an overview of the research designs commonly used in epidemiology. Statistics and Causality: Methods for Applied Empirical Research also includes: New statistical methodologies and approaches to causal analysis in the context of the continuing development of philosophical theories End-of-chapter bibliographies that provide references for further discussions and additional research topics Discussions on the use and applicability of software when appropriate Statistics and Causality: Methods for Applied Empirical Research is an ideal reference for practicing statisticians, applied mathematicians, psychologists, sociologists, logicians, medical professionals, epidemiologists, and educators who want to learn more about new methodologies in causal analysis. The book is also an excellent textbook for graduate-level courses in causality and qualitative logic.