Myocardial Tissue Engineering

Author: Aldo R. Boccaccini
Publisher: Springer Science & Business Media
ISBN: 9783642180569
Size: 42.81 MB
Format: PDF, Mobi
View: 6614
Download
Myocardial tissue engineering (MTE), a concept that intends to prolong patients’ life after cardiac damage by supporting or restoring heart function, is continuously improving. Common MTE strategies include an engineered ‘vehicle’, which may be a porous scaffold or a dense substrate or patch, made of either natural or synthetic polymeric materials. The function of the substrate is to aid transportation of cells into the diseased region of the heart and support their integration. This book, which contains chapters written by leading experts in MTE, gives a complete analysis of the area and presents the latest advances in the field. The chapters cover all relevant aspects of MTE strategies, including cell sources, specific TE techniques and biomaterials used. Many different cell types have been suggested for cell therapy in the framework of MTE, including autologous bone marrow-derived or cardiac progenitors, as well as embryonic or induced pluripotent stem cells, each having their particular advantages and disadvantages. The book covers a complete range of biomaterials, examining different aspects of their application in MTE, such as biocompatibility with cardiac cells, mechanical capability and compatibility with the mechanical properties of the native myocardium as well as degradation behaviour in vivo and in vitro. Although a great deal of research is being carried out in the field, this book also addresses many questions that still remain unanswered and highlights those areas in which further research efforts are required. The book will also give an insight into clinical trials and possible novel cell sources for cell therapy in MTE.

Tissue Engineering

Author: Paulo Rui Fernandes
Publisher: Springer Science & Business Media
ISBN: 9400770731
Size: 67.53 MB
Format: PDF
View: 4598
Download
This book describes the state of the art on computational modeling and fabrication in Tissue Engineering. It is inspired by the ECCOMAS thematic conference, the European Committee on Computational Methods in Applied Sciences, on Tissue Engineering, held in Lisbon, Portugal, June 2-4, 2011. Tissue Engineering is a multidisciplinary field involving scientists from different fields. The development of mathematical methods is quite relevant to understand cell biology and human tissues as well to model, design and fabricate optimized and smart scaffolds. Emphasis is put on mathematical and computational modeling for scaffold design and fabrication. This particular area of tissue engineering, whose goal is to obtain substitutes for hard tissues such as bone and cartilage, is growing in importance.

Cardiovascular And Cardiac Therapeutic Devices

Author: Thomas Franz
Publisher: Springer Science & Business
ISBN: 3642538363
Size: 61.56 MB
Format: PDF, ePub
View: 3669
Download
This volume focuses on latest research in therapeutic devices for cardiovascular, i.e. vascular and valvular and cardiac diseases. In the area of vascular therapies, aspects covered relate to latest research in small-diameter tissue-regenerative vascular grafts, one of the greatest persisting challenges in cardiovascular therapies, stent grafts and endovascular stents for percutaneous arterial interventions. Contributions on valvular therapies focus on tissue engineered and tissue regenerative prosthetic heart valves and valvular prostheses for trans-apical implantation including the challenges posed on the prosthesis design. The section on cardiac diseases aims at covering therapeutic advances for myocardial infarction and prevention of heart failure and on in vivo biomechanics of implantable cardiac pacemaker devices. A further section complements these three areas by presenting constitutive modelling of soft biological tissues of the cardiovascular system, an area imperative for advanced numerical and computational modelling in the development and optimisation of cardiovascular devices and therapies.

Principles Of Tissue Engineering

Author: Robert Lanza
Publisher: Academic Press
ISBN: 0123983703
Size: 59.11 MB
Format: PDF, Docs
View: 6090
Download
Now in its fourth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fourth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world’s experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future. This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and other emerging technologies –such as brain-machine interfaces for controlling bionics and neuroprostheses– is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the application of tissue-engineering techniques for food production. The result is a comprehensive textbook that will be useful to students and experts alike. Includes new chapters on biomaterial-protein interactions, nanocomposite and three-dimensional scaffolds, skin substitutes, spinal cord, vision enhancement, and heart valves Offers expanded coverage of adult and embryonic stem cells of the cardiovascular, hematopoietic, musculoskeletal, nervous, and other organ systems Full-color presentation throughout

Regenerative Strategies For The Treatment Of Knee Joint Disabilities

Author: Joaquim Miguel Oliveira
Publisher: Springer
ISBN: 3319447858
Size: 21.96 MB
Format: PDF, ePub
View: 1971
Download
This book presents regenerative strategies for the treatment of knee joint disabilities. The book is composed of four main sections totaling 19 chapters which review the current knowledge on the clinical management and preclinical regenerative strategies. It examines the role of different natural-based biomaterials as scaffolds and implants for addressing different tissue lesions in the knee joint. Section one provides an updated and comprehensive discussion on articular cartilage tissue regeneration. Section two focuses on the important contributions for bone and osteochondral tissue engineering. Section three overview the recent advances on meniscus repair/regeneration strategies. Finally, section four further discusses the current strategies for treatment of ligament lesions. Each chapter is prepared by world know expert on their fields, so we do firmly believe that the proposed book will be a reference in the area of biomaterials for regenerative medicine.

Functional Tissue Engineering

Author: Farshid Guilak
Publisher: Springer Science & Business Media
ISBN: 0387215476
Size: 20.95 MB
Format: PDF, Docs
View: 7052
Download
-Softcover reprint of a successful hardcover reference (370 copies sold) -Price to be accessible to the rapidly increasing population of students and investigators in the field of tissue engineering -Chapters written by well-known researchers discuss issues in functional tissue engineering as well as provide guidelines and a summary of the current state of technology

In Situ Tissue Regeneration

Author: Sang Jin Lee
Publisher: Academic Press
ISBN: 012802500X
Size: 47.59 MB
Format: PDF, ePub, Docs
View: 2540
Download
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body’s ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body’s own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. Explores the body’s ability to mobilize endogenous stem cells to the site of injury Details the latest strategies developed for inducing and supporting the body’s own regenerating capacity Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume Features chapter authors and editors who are authorities in this emerging field Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry

13th International Conference On Biomedical Engineering

Author: Chwee Teck Lim
Publisher: Springer Science & Business Media
ISBN: 3540928413
Size: 49.77 MB
Format: PDF, Mobi
View: 721
Download
th On behalf of the organizing committee of the 13 International Conference on Biomedical Engineering, I extend our w- mest welcome to you. This series of conference began in 1983 and is jointly organized by the YLL School of Medicine and Faculty of Engineering of the National University of Singapore and the Biomedical Engineering Society (Singapore). First of all, I want to thank Mr Lim Chuan Poh, Chairman A*STAR who kindly agreed to be our Guest of Honour to give th the Opening Address amidst his busy schedule. I am delighted to report that the 13 ICBME has more than 600 participants from 40 countries. We have received very high quality papers and inevitably we had to turndown some papers. We have invited very prominent speakers and each one is an authority in their field of expertise. I am grateful to each one of them for setting aside their valuable time to participate in this conference. For the first time, the Biomedical Engineering Society (USA) will be sponsoring two symposia, ie “Drug Delivery S- tems” and “Systems Biology and Computational Bioengineering”. I am thankful to Prof Tom Skalak for his leadership in this initiative. I would also like to acknowledge the contribution of Prof Takami Yamaguchi for organizing the NUS-Tohoku’s Global COE workshop within this conference. Thanks also to Prof Fritz Bodem for organizing the symposium, “Space Flight Bioengineering”. This year’s conference proceedings will be published by Springer as an IFMBE Proceedings Series.

Biomechanics Trends In Modeling And Simulation

Author: Gerhard A. Holzapfel
Publisher: Springer
ISBN: 3319414755
Size: 36.14 MB
Format: PDF, ePub
View: 609
Download
The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls and the myocardium are discussed and the important influence of residual stresses on material response emphasized. The mechanics and function of the heart, the brain and adipose tissues are discussed as well. Particular attention is focused on microstructural and multi-scale modeling, finite element implementation and simulation of cells and tissues.