Multiplicative Invariant Theory

Author: Martin Lorenz
Publisher: Springer Science & Business Media
ISBN: 3540273581
Size: 54.59 MB
Format: PDF, ePub
View: 3380
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.

Computational Invariant Theory

Author: Harm Derksen
Publisher: Springer
ISBN: 3662484226
Size: 59.43 MB
Format: PDF
View: 6545
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.

Modular Invariant Theory

Author: H.E.A. Eddy Campbell
Publisher: Springer Science & Business Media
ISBN: 9783642174049
Size: 24.96 MB
Format: PDF, ePub, Docs
View: 4145
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.

Groups Rings And Algebras

Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 0821839047
Size: 36.49 MB
Format: PDF
View: 4104
This is a companion volume to the conference in honor of Donald S. Passman held in Madison, Wisconsin in June 2005. It contains research papers on Algebras, Group Rings, Hopf Algebras, Invariant Theory, Lie Algebras and their Enveloping Algebras, Noncommutative Algebraic Geometry, Noncommutative Rings, and other topics. The papers represent an important part of the latest research in these areas.


Author: New Zealand Mathematical Society
Size: 60.55 MB
Format: PDF, ePub
View: 1946

Introduction To Modern Number Theory

Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 9783540276920
Size: 10.32 MB
Format: PDF
View: 493
This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.

Projective Duality And Homogeneous Spaces

Author: Evgueni A. Tevelev
Publisher: Springer Science & Business Media
ISBN: 3540269576
Size: 79.41 MB
Format: PDF
View: 7130
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.

Homogeneous Spaces And Equivariant Embeddings

Author: D.A. Timashev
Publisher: Springer Science & Business Media
ISBN: 9783642183997
Size: 11.35 MB
Format: PDF
View: 6704
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.