Molecular Imprinting

Author: Lei Ye
Publisher: CRC Press
ISBN: 9814364878
Size: 46.44 MB
Format: PDF, ePub
View: 5408
Download
Molecular imprinting is one of the most efficient methods to fabricate functional polymer structures with pre-defined molecular recognition selectivity. Molecularly imprinted polymers (MIPs) have been used as antibody and enzyme mimics in a large number of applications. The outstanding stability and straightforward preparation make MIPs ideal substitutes for biologically derived molecular recognition materials, especially for development of affinity separation systems, chemical sensors and high selectivity catalysts. New MIP materials are being increasingly applied to solve challenging problems in environmental sciences, food safety control, biotechnology and medical diagnostics. Development in molecular imprinting research over the past decade has enabled tailor-designed molecular recognition sites to be created in synthetic materials with physical dimensions in the micro- and nano-regime. The new breakthroughs in MIP synthesis/fabrication have brought in many unprecedented functions of the micro- and nano-structured polymers. The aim of this review volume is to introduce to the readers the new developments in molecularly imprinted micro- and nano-structures, and the new applications that have been made possible with the new generation of imprinted materials.

Molecularly Imprinted Polymers In Biotechnology

Author: Bo Mattiasson
Publisher: Springer
ISBN: 3319207296
Size: 58.73 MB
Format: PDF, ePub, Docs
View: 4989
Download
Controlled radical polymerization techniques for molecular imprinting, by Mark E. Byrne From bulk polymers to nanoparticles, by Lei Ye Post-imprinting and in-cavity functionalization, by Toshifumi Takeuchi Characterization of MIPs (affinity, selectivity, site heterogeneity...), by Richard Ansell Theoretical aspects and computer modelling, by Ian Nicholls MIPs in aqueous environments, by Bin Lu MIPs for binding macromolecules, by Kenneth J. Shea Solid phase extraction, by Ecevit Yilmaz Sensors, by Sergey A. Piletsky MIPs for catalysis and synthesis, by Marina Resmini Wastewater treatment, by Bo Mattiasson MIPs as tools for bioassays, biotransformation and drug delivery, by Meiping Zhao

Nanoencapsulation Technologies For The Food And Nutraceutical Industries

Author: Seid Mahdi Jafari
Publisher: Academic Press
ISBN: 0128113642
Size: 56.42 MB
Format: PDF, ePub, Mobi
View: 993
Download
Nanoencapsulation Technologies for the Food and Nutraceutical Industries is a compendium which collects, in an easy and compact way, state-of-the-art details on techniques for nanoencapsulation of bioactive compounds in food and nutraceutical industries. The book addresses important modern technologies, including biopolymer based nano-particle formation techniques, formulation based processes, such as nano-liposomes and nano-emulsions, process based nano-encapsulation, such as electro-spinning and nano-spray drying, natural nano-carrier based processes, like casein and starch nano-particles, and other recent advances. This definitive reference manual is ideal for researchers and industry personnel who want to learn more about basic concepts and recent developments in nanotechnology research. Serves as a compendium of recent techniques and systems for nanoencapsulation of bioactive compounds Brings together basic concepts and the potential of nanoencapsulation technologies, also including their novel applications in functional foods and nutraceutical systems Includes biopolymer based nano-particle formation techniques, formulation based processes, process based nanoencapsulation, and nano-carrier based process

Applications Of Radiation Chemistry In The Fields Of Industry Biotechnology And Environment

Author: Margherita Venturi
Publisher: Springer
ISBN: 3319541455
Size: 45.42 MB
Format: PDF, ePub
View: 6336
Download
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Molecularly Imprinted Polymers

Author: B. Sellergren
Publisher: Elsevier
ISBN: 9780080536804
Size: 41.92 MB
Format: PDF
View: 180
Download
This book is divided into 5 sections starting with an historic perspective and fundamental aspects on the synthesis and recognition by imprinted polymers. The second section contains 8 up-to-date overview chapters on current approaches to molecular and ion imprinting. This is followed by two chapters on new material morphologies and in the last two sections various analytical applications of imprinted polymers are given, with the last four chapters devoted to the promising field of imprinted polymers in chemical sensors. The authors of this volume have widely different backgrounds; mainly polymer chemistry, organic chemistry, biochemistry and analytical chemistry, which means that this book has an interdisciplinary character and should appeal to a broad audience.

Nanostructured Polymer Blends

Author: Sabu Thomas
Publisher: William Andrew
ISBN: 1455731609
Size: 78.76 MB
Format: PDF, Kindle
View: 4398
Download
Over 30% of commercial polymers are blends or alloys or one kind or another. Nanostructured blends offer the scientist or plastics engineer a new range of possibilities with characteristics including thermodynamic stablility; the potential to improve material transparency, creep and solvent resistance; the potential to simultaneously increase tensile strength and ductility; superior rheological properties; and relatively low cost. Nanostructured Polymer Blends opens up immense structural possibilities via chemical and mechanical modifications that generate novel properties and functions and high-performance characteristics at a low cost. The emerging applications of these new materials cover a wide range of industry sectors, encompassing the coatings and adhesives industry, electronics, energy (photovoltaics), aerospace and medical devices (where polymer blends provide innovations in biocompatible materials). This book explains the science of nanostructure formation and the nature of interphase formations, demystifies the design of nanostructured blends to achieve specific properties, and introduces the applications for this important new class of nanomaterial. All the key topics related to recent advances in blends are covered: IPNs, phase morphologies, composites and nanocomposites, nanostructure formation, the chemistry and structure of additives, etc. Introduces the science and technology of nanostructured polymer blends – and the procedures involved in melt blending and chemical blending to produce new materials with specific performance characteristics Unlocks the potential of nanostructured polymer blends for applications across sectors, including electronics, energy/photovoltaics, aerospace/automotive, and medical devices (biocompatible polymers) Explains the performance benefits in areas including rheological properties, thermodynamic stablility, material transparency, solvent resistance, etc.

Molecularly Imprinted Sensors

Author: Songjun Li
Publisher: Elsevier
ISBN: 0444563318
Size: 12.70 MB
Format: PDF
View: 1280
Download
Molecular imprinting is a rapidly growing field with wide-ranging applications, especially in the area of sensor development, where the process leads to improved sensitivity, reliability, stability, and reproducibility in sensing materials. Molecularly Imprinted Sensors in Analytical Chemistry addresses the most recent advances and challenges relating to molecularly imprinted polymer sensors, and is the only book to compile this information in a single source. From fundamentals to applications, this material will be valuable to researchers working in sensing technologies for pharmaceutical separation and chemical analysis, environmental monitoring and protection, defense and security, and healthcare. Provides a systematic introduction to the different types of MIP-based sensors and reviews the basic principles behind each type of sensor Includes state-of-the-art methodology supported by comparisons and discussions from leading experts in the field Covers all types of sensing modes (optical, electrochemical, thermal, acoustic, etc.), materials and platforms Appeals to a multidisciplinary audience of scientists and graduate students in a wide variety of fields, including chemistry, biology, biomedical science and engineering, and materials science and engineering

Microfabrication For Industrial Applications

Author: Regina Luttge
Publisher: William Andrew
ISBN: 081551977X
Size: 29.14 MB
Format: PDF, ePub, Mobi
View: 4846
Download
This book focuses on the industrial perspective for micro- and nanofabrication methods including large-scale manufacturing, transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. It gives a history of miniaturization, micro- and nanofabrication, and surveys industrial fields of application, illustrating fabrication processes of relevant micro and nano devices. Concerning sub-micron feature manufacture, the book explains: the philosophy of micro/ nanofabrication for integrated circuit industry; thin film deposition; (waveguide, plastic, semiconductor) material processing; packaging; interconnects; stress (e.g., thin film residual); economic; and environmental aspects. Micro/nanomechanical sensors and actuators are explained in depth with information on applications, materials (incl. functional polymers), methods, testing, fabrication, integration, reliability, magnetic microstructures, etc. Shows engineers & students how to evaluate the potential value of current and nearfuture manufacturing processes for miniaturized systems in industrial environments Explains the top-down and bottom up approaches to nanotechnology, nanostructures fabricated with beams, nano imprinting methods, nanoparticle manufacturing (and their health aspects), nanofeature analysis, and connecting nano to micro to macro Discusses issues for practical application cases; possibilities of dimension precision; large volume manufacturing of micro- & nanostructures (machines, materials, costs) Explains applications of Microsystems for information technology, e.g.: data recording (camera, microphone), storage (memories, CDs), communication; computing; and displays (beamers, LCD, TFT) Case studies are given for sensors, resonators, probes, transdermal medical systems, micro- pumps & valves, inkjets, DNA-analysis, lab-on-a-chip, & micro-cooling

Nanostructures For Novel Therapy

Author: Denisa Ficai
Publisher: Elsevier
ISBN: 0323461484
Size: 25.20 MB
Format: PDF, Docs
View: 3130
Download
Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs

Conducting Polymers With Micro Or Nanometer Structure

Author: Meixiang Wan
Publisher: Springer Science & Business Media
ISBN: 9783540693239
Size: 75.76 MB
Format: PDF, Mobi
View: 3850
Download
Conducting Polymers with Micro or Nanometer Structure describes a topic discovered by three winners of the Nobel Prize in Chemistry in 2000: Alan J. Heeger, University of California at Santa Barbara, Alan G. MacDiarmid at the University of Pennsylvania, and Hideki Shirakawa at the University of Tsukuba. Since then, the unique properties of conducting polymers have led to promising applications in functional materials and technologies. The book first briefly summarizes the main concepts of conducting polymers before introducing micro/nanostructured conducting polymers dealing with their synthesis, structural characterizations, formation mechanisms, physical and chemical properties, and potential applications in nanomaterials and nanotechnology. The book is intended for researchers in the related fields of chemistry, physics, materials, nanomaterials and nanodevices. Meixiang Wan is a professor at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.