Modern Theory Of Gratings

Author: Yuriy K. Sirenko
Publisher: Springer
ISBN: 1441912002
Size: 59.50 MB
Format: PDF, ePub
View: 3075
Download
The advances in the theory of diffraction gratings and the applications of these results certainly determine the progress in several areas of applied science and engineering. The polarization converters, phase shifters and filters, quantum and solid-state oscillators, open quasi optical dispersive resonators and power compressors, slow-wave structures and patter forming systems, accelerators and spectrometer; that is still far from being a complete list of devices exploiting the amazing ability of periodic structures to perform controlled frequency, spatial, and polarization selection of signals. Diffraction gratings used to be and still are one of the most popular objects of analysis in electromagnetic theory. The further development of the theory of diffraction gratings, in spite of considerable achievements, is still very important presently. The requirements of applied optics and microwave engineering present the theory of diffraction gratings with many new problems which force us to search for new methods and tools for their resolution. Just in such way there appeared recently new fields, connected with the analysis, synthesis and definition of equivalent parameters of artificial materials – layers and coatings, having periodic structure and possessing features, which can be found in natural materials only in extraordinary or exceptional situations. In this book the authors present results of the electromagnetic theory of diffraction gratings that may constitute the base of further development of this theory which can meet the challenges provided by the most recent requirements of fundamental and applied science. The following issues will be considered in the book Authentic methods of analytical regularization, that perfectly match the requirements of analysis of resonant scattering of electromagnetic waves by gratings; Spectral theory of gratings, providing a reliable foundation for the analysis of spatial – frequency transformations of electromagnetic fields occurring in open periodic resonators and waveguides; Parametric Fourier method and C-method, that are oriented towards the efficient numerical analysis of transformation properties of fields in the case of arbitrary profile periodic boundary between dielectric media and multilayered conformal arrays; Rigorous methods for analysis of transient processes and time-spatial transformations of electromagnetic waves in resonant situations, based on development and incorporation in standard numerical routines of FDTD of so called explicit absorbing boundary conditions; New approaches to the solution of homogenization problems – the key problem arising in construction of metamaterials and meta surfaces; New physical results about the resonance scattering of pulse and monochromatic waves by periodic structures, including structures with chiral or left-handed materials; Methods and the results of the solutions of several actual applied problems of analysis and synthesis of pattern creating gratings, power compressors, resonance radiators of high capacity short radio pulses, open electromagnetic structures for the systems of resonant quasi optics and absorbing coatings.

Plasmonics Fundamentals And Applications

Author: Stefan Alexander Maier
Publisher: Springer Science & Business Media
ISBN: 9780387378251
Size: 55.92 MB
Format: PDF, Mobi
View: 2932
Download
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

Electromagnetic Wave Scattering On Nonspherical Particles

Author: Tom Rother
Publisher: Springer
ISBN: 3642367453
Size: 67.32 MB
Format: PDF, ePub, Mobi
View: 5764
Download
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. Beside the systematically developed Green’s function formalism of the first edition this second and enlarged edition contains additional material regarding group theoretical considerations for nonspherical particles with boundary symmetries, an iterative T-matrix scheme for approximate solutions, and two additional but basic applications. Moreover, to demonstrate the advantages of the group theoretical approach and the iterative solution technique, the restriction to axisymmetric scatterers of the first edition was abandoned.

Confocal Raman Microscopy

Author: Thomas Dieing
Publisher: Springer Science & Business Media
ISBN: 3642125212
Size: 64.84 MB
Format: PDF, ePub, Mobi
View: 1497
Download
Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

The Physics Of Thin Film Optical Spectra

Author: Olaf Stenzel
Publisher: Springer
ISBN: 3319216023
Size: 37.30 MB
Format: PDF, Docs
View: 6644
Download
The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

Optical Measurement Of Surface Topography

Author: Richard Leach
Publisher: Springer Science & Business Media
ISBN: 9783642120121
Size: 16.64 MB
Format: PDF, ePub, Mobi
View: 1107
Download
The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.

Quantum Plasmonics

Author: Sergey I. Bozhevolnyi
Publisher: Springer
ISBN: 3319458205
Size: 69.93 MB
Format: PDF, ePub
View: 4202
Download
This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

Principles Of Lasers

Author: Orazio Svelto
Publisher: Springer Science & Business Media
ISBN: 1461576679
Size: 17.17 MB
Format: PDF, Kindle
View: 621
Download
This second edition, appearing about twenty years after the discovery of the laser is a substantially revised version of the first edition. It is, like the first, aimed at both classroom teaching and self-study by technical personnel interested in learning the principles of laser operation. In preparing the second edition the hope has been that both these aims will be better served as a result of the various improvements made. The main changes have been made with the following aims in mind: (i) To update the book. Thus new topics have been added (in particular on various new types of lasers, e. g. , rare-gas-halide excimer lasers, color-center lasers, and free-electron lasers), while on the other hand some topics have been given less emphasis (again this applies particularly to some types of lasers, e. g. , the ruby laser). Updating is especially important in the area of laser applications, and the chapter on this topic has therefore been com pletely rewritten. (ii) To make some improvements to the logical consis tency of the book by rearranging material and adding new material. Thus a few topics have been moved from one section to another and a new chapter entitled Laser Beam Transformation has been added. (iii) To further reduce the mathematical content, placing greater emphasis on physical descrip tions of phenomena.

Optical Properties Of Metallic Nanoparticles

Author: Andreas Trügler
Publisher: Springer
ISBN: 3319250744
Size: 73.69 MB
Format: PDF, ePub
View: 826
Download
This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.

Cavity Enhanced Spectroscopy And Sensing

Author: Gianluca Gagliardi
Publisher: Springer
ISBN: 3642400035
Size: 70.35 MB
Format: PDF, ePub, Mobi
View: 6935
Download
The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.