Mechanics Of Structures

Author: Walter Wunderlich
Publisher: CRC Press
ISBN: 1420041835
Size: 22.53 MB
Format: PDF, Docs
View: 466
Download
Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.

Analysis And Design Of Elastic Beams

Author: Walter D. Pilkey
Publisher: John Wiley & Sons
ISBN: 9780471423218
Size: 51.18 MB
Format: PDF, Kindle
View: 3140
Download
State-of-the-art coverage of modern computational methods for the analysis and design of beams Analysis and Design of Elastic Beams presents computer models and applications related to thin-walled beams such as those used in mechanical and aerospace designs, where thin, lightweight structures with high strength are needed. This book will enable readers to compute the cross-sectional properties of individual beams with arbitrary cross-sectional shapes, to apply a general-purpose computer analysis of a complete structure to determine the forces and moments in the individual members, and to use a unified approach for calculating the normal and shear stresses, as well as deflections, for those members' cross sections. In addition, this book augments a solid foundation in the basic structural design theory of beams by: * Providing coverage of thin-wall structure analysis and optimization techniques * Applying computer numerical methods to classical design methods * Developing computational solutions for cross-sectional properties and stresses using finite element analyses Including access to an associated Web site with software for the analysis and design of any cross-sectional shape, Analysis and Design of Elastic Beams: Computational Methods is an essential reference for mechanical, aerospace, and civil engineers and designers working in the automotive, ship, and aerospace industries in product and process design, machine design, structural design, and design optimization, as well as students and researchers in these areas.

Energy Principles And Variational Methods In Applied Mechanics

Author: J. N. Reddy
Publisher: John Wiley & Sons
ISBN: 1119087376
Size: 75.55 MB
Format: PDF, Mobi
View: 329
Download
A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.

Computational Mechanics For Heritage Structures

Author: B. Leftheris
Publisher: WIT Press
ISBN: 1845640349
Size: 20.90 MB
Format: PDF, ePub, Mobi
View: 2422
Download
Reflecting the authors' extensive experience, and describing the results of projects they have worked on, this book deals with applications of advanced computational mechanics techniques in structural analysis, strength rehabilitation and aseismic design of monuments, historical buildings and related structures. The results are given with clear explanations so that civil and structural engineers, architects and archaeologists, and students of these disciplines can understand how to evaluate the structural worthiness of heritage buildings without the use of difficult mathematics.

Numerical And Computer Methods In Structural Mechanics

Author: Steven J. Fenves
Publisher: Elsevier
ISBN: 1483272540
Size: 47.58 MB
Format: PDF, Mobi
View: 5474
Download
Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.

Variational Methods In The Mechanics Of Solids

Author: S. Nemat-Nasser
Publisher: Elsevier
ISBN: 1483145832
Size: 11.33 MB
Format: PDF, ePub
View: 2497
Download
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.

Computational Mechanics In Structural Engineering

Author: F.Y. Cheng
Publisher: Elsevier
ISBN: 9780080529493
Size: 73.33 MB
Format: PDF, Kindle
View: 5857
Download
The Second Sino-US Symposium Workshop on Recent Advancement of Computational Mechanics in Structural Engineering was held between May 25-28, 1998, in Dalian, China. The objectives were: to share the insights and experiences gained from recent developments in theory and practice; to assess the current state of knowledge in various topic areas of mechanics and computational methods and to identify joint research opportunities; to stimulate future cooperative research and to develop joint efforts in subjects of common needs and interests; to build and to strengthen the long-term bilateral scientific relationship between academic and professional practicing communities. Topics discussed covered the entire field of computational structural mechanics. These topics have advanced broad applications in the engineering practice of modern structural analysis, design and construction of buildings and other structures, and in natural hazard mitigation.

Numerical Methods In Structural Mechanics

Author: Zdeněk Bittnar
Publisher: Thomas Telford
ISBN: 9780727725554
Size: 65.69 MB
Format: PDF
View: 4634
Download
Fast development of numerical methods in mechanics has been attracting an increasing number of students, researchers and design specialists from all branches of engineering. This book has been written to provide an understanding of the nature and the theoretical basis of the most widely used numerical methods - the finite element method (FEM) and the boundary element method (BEM), and, at the same time it outlines the most promising directions of their future development. The book concentrates on the most efficient and reliable methods which have become widely adopted, and on the methods which are currently under fast development. It contains numerous examples which either illustrate various computational algorithms and compare their accuracy and efficiency, or elucidate the mechanical process under investigation.

Stochastic Analysis Of Offshore Steel Structures

Author: Halil Karadeniz
Publisher: Springer Science & Business Media
ISBN: 1849961905
Size: 44.32 MB
Format: PDF, ePub
View: 6170
Download
Stochastic Analysis of Offshore Steel Structures provides a clear and detailed guide to advanced analysis methods of fixed offshore steel structures using 3D beam finite elements under random wave and earthquake loadings. Advanced and up-to-date research results are coupled with modern analysis methods and essential theoretical information to consider optimal solutions to structural issues. As these methods require and use knowledge of different subject matters, a general introduction to the key areas is provided. This is followed by in-depth explanations supported by design examples, relevant calculations and supplementary material containing related computer programmers. By combining this theoretical and practical approach Stochastic Analysis of Offshore Steel Structures cover a range of key concepts in detail including: The basic principles of standard 3D beam finite elements and special connections, Wave loading - from hydrodynamics to the calculation of wave loading on structural members, Stochastic response calculations with corresponding solution algorithms including earthquakes, and Fatigue damage, reliability calculation and reliability based design optimization. The broad and detailed coverage makes this a solid reference for research oriented studies and practical sophisticated design methods. Students, researchers, insuring bodies and practical designer offices can turn to Stochastic Analysis of Offshore Steel Structures to broaden their theoretical understanding and develop their practical designs and applications of 3D finite analysis in fixed offshore steel structures.