Measuring Statistical Evidence Using Relative Belief

Author: Michael Evans
Publisher: CRC Press
ISBN: 148224280X
Size: 44.44 MB
Format: PDF, Kindle
View: 6277
A Sound Basis for the Theory of Statistical Inference Measuring Statistical Evidence Using Relative Belief provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It shows that being explicit about how to measure statistical evidence allows you to answer the basic question of when a statistical analysis is correct. The book attempts to establish a gold standard for how a statistical analysis should proceed. It first introduces basic features of the overall approach, such as the roles of subjectivity, objectivity, infinity, and utility in statistical analyses. It next discusses the meaning of probability and the various positions taken on probability. The author then focuses on the definition of statistical evidence and how it should be measured. He presents a method for measuring statistical evidence and develops a theory of inference based on this method. He also discusses how statisticians should choose the ingredients for a statistical problem and how these choices are to be checked for their relevance in an application.

Statistical Evidence

Author: Richard Royall
Publisher: Routledge
ISBN: 1351414550
Size: 56.88 MB
Format: PDF, Docs
View: 1123
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.

Statistical Consulting

Author: Javier Cabrera
Publisher: Springer Science & Business Media
ISBN: 1475736630
Size: 49.97 MB
Format: PDF, ePub, Mobi
View: 6313
This book is intended for the statistician or student interested in becoming a statistical consultant, as well as clients who need to understand what is involved in the consulting process. It discusses different consulting environments, provides detailed descriptions of communication skills a consultant must possess, and provides concrete examples and case-studies of varying complexity. Emphasis is placed on the importance of engaging the client's understanding of the purpose and interpretation of statistical procedures.

Introduction To Credit Risk Modeling Second Edition

Author: Christian Bluhm
Publisher: CRC Press
ISBN: 1584889934
Size: 35.72 MB
Format: PDF, ePub
View: 5425
Contains Nearly 100 Pages of New Material The recent financial crisis has shown that credit risk in particular and finance in general remain important fields for the application of mathematical concepts to real-life situations. While continuing to focus on common mathematical approaches to model credit portfolios, Introduction to Credit Risk Modeling, Second Edition presents updates on model developments that have occurred since the publication of the best-selling first edition. New to the Second Edition An expanded section on techniques for the generation of loss distributions Introductory sections on new topics, such as spectral risk measures, an axiomatic approach to capital allocation, and nonhomogeneous Markov chains Updated sections on the probability of default, exposure-at-default, loss-given-default, and regulatory capital A new section on multi-period models Recent developments in structured credit The financial crisis illustrated the importance of effectively communicating model outcomes and ensuring that the variation in results is clearly understood by decision makers. The crisis also showed that more modeling and more analysis are superior to only one model. This accessible, self-contained book recommends using a variety of models to shed light on different aspects of the true nature of a credit risk problem, thereby allowing the problem to be viewed from different angles.

Design And Analysis Of Cross Over Trials Third Edition

Author: Byron Jones
Publisher: CRC Press
ISBN: 1439861420
Size: 79.36 MB
Format: PDF, Docs
View: 7596
Design and Analysis of Cross-Over Trials is concerned with a specific kind of comparative trial known as the cross-over trial, in which subjects receive different sequences of treatments. Such trials are widely used in clinical and medical research, and in other diverse areas such as veterinary science, psychology, sports science, and agriculture. The first edition of this book was the first to be wholly devoted to the subject. The second edition was revised to mirror growth and development in areas where the design remained in widespread use and new areas where it had grown in importance. This new Third Edition: Contains seven new chapters written in the form of short case studies that address re-estimating sample size when testing for average bioequivalence, fitting a nonlinear dose response function, estimating a dose to take forward from phase two to phase three, establishing proof of concept, and recalculating the sample size using conditional power Employs the R package Crossover, specially created to accompany the book and provide a graphical user interface for locating designs in a large catalog and for searching for new designs Includes updates regarding the use of period baselines and the analysis of data from very small trials Reflects the availability of new procedures in SAS, particularly proc glimmix Presents the SAS procedure proc mcmc as an alternative to WinBUGS for Bayesian analysis Complete with real data and downloadable SAS code, Design and Analysis of Cross-Over Trials, Third Edition provides a practical understanding of the latest methods along with the necessary tools for implementation.

Common Errors In Statistics And How To Avoid Them

Author: Phillip I. Good
Publisher: John Wiley & Sons
ISBN: 1118360117
Size: 29.61 MB
Format: PDF
View: 2807
Praise for Common Errors in Statistics (and How to Avoid Them) "A very engaging and valuable book for all who use statistics in any setting." —CHOICE "Addresses popular mistakes often made in data collection and provides an indispensable guide to accurate statistical analysis and reporting. The authors' emphasis on careful practice, combined with a focus on the development of solutions, reveals the true value of statistics when applied correctly in any area of research." —MAA Reviews Common Errors in Statistics (and How to Avoid Them), Fourth Edition provides a mathematically rigorous, yet readily accessible foundation in statistics for experienced readers as well as students learning to design and complete experiments, surveys, and clinical trials. Providing a consistent level of coherency throughout, the highly readable Fourth Edition focuses on debunking popular myths, analyzing common mistakes, and instructing readers on how to choose the appropriate statistical technique to address their specific task. The authors begin with an introduction to the main sources of error and provide techniques for avoiding them. Subsequent chapters outline key methods and practices for accurate analysis, reporting, and model building. The Fourth Edition features newly added topics, including: Baseline data Detecting fraud Linear regression versus linear behavior Case control studies Minimum reporting requirements Non-random samples The book concludes with a glossary that outlines key terms, and an extensive bibliography with several hundred citations directing readers to resources for further study. Presented in an easy-to-follow style, Common Errors in Statistics, Fourth Edition is an excellent book for students and professionals in industry, government, medicine, and the social sciences.

Survival And Event History Analysis

Author: Odd Aalen
Publisher: Springer Science & Business Media
ISBN: 038768560X
Size: 24.35 MB
Format: PDF, ePub, Docs
View: 3379
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Principles Of Uncertainty

Author: Joseph B. Kadane
Publisher: CRC Press
ISBN: 1439861617
Size: 67.71 MB
Format: PDF, Docs
View: 3477
An intuitive and mathematical introduction to subjective probability and Bayesian statistics. An accessible, comprehensive guide to the theory of Bayesian statistics, Principles of Uncertainty presents the subjective Bayesian approach, which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. Both rigorous and friendly, the book contains: Introductory chapters examining each new concept or assumption Just-in-time mathematics – the presentation of ideas just before they are applied Summary and exercises at the end of each chapter Discussion of maximization of expected utility The basics of Markov Chain Monte Carlo computing techniques Problems involving more than one decision-maker Written in an appealing, inviting style, and packed with interesting examples, Principles of Uncertainty introduces the most compelling parts of mathematics, computing, and philosophy as they bear on statistics. Although many books present the computation of a variety of statistics and algorithms while barely skimming the philosophical ramifications of subjective probability, this book takes a different tack. By addressing how to think about uncertainty, this book gives readers the intuition and understanding required to choose a particular method for a particular purpose.

Applied Survey Data Analysis Second Edition

Author: Steven G. Heeringa
Publisher: CRC Press
ISBN: 1351649302
Size: 38.25 MB
Format: PDF, Mobi
View: 3081
Highly recommended by the Journal of Official Statistics, The American Statistician, and other journals, Applied Survey Data Analysis, Second Edition provides an up-to-date overview of state-of-the-art approaches to the analysis of complex sample survey data. Building on the wealth of material on practical approaches to descriptive analysis and regression modeling from the first edition, this second edition expands the topics covered and presents more step-by-step examples of modern approaches to the analysis of survey data using the newest statistical software. Designed for readers working in a wide array of disciplines who use survey data in their work, this book continues to provide a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. An example-driven guide to the applied statistical analysis and interpretation of survey data, the second edition contains many new examples and practical exercises based on recent versions of real-world survey data sets. Although the authors continue to use Stata for most examples in the text, they also continue to offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s updated website.

Practical Statistics For Medical Research

Author: Douglas G. Altman
Publisher: CRC Press
ISBN: 9780412276309
Size: 42.37 MB
Format: PDF, ePub, Docs
View: 521
Most medical researchers, whether clinical or non-clinical, receive some background in statistics as undergraduates. However, it is most often brief, a long time ago, and largely forgotten by the time it is needed. Furthermore, many introductory texts fall short of adequately explaining the underlying concepts of statistics, and often are divorced from the reality of conducting and assessing medical research. Practical Statistics for Medical Research is a problem-based text for medical researchers, medical students, and others in the medical arena who need to use statistics but have no specialized mathematics background. The author draws on twenty years of experience as a consulting medical statistician to provide clear explanations to key statistical concepts, with a firm emphasis on practical aspects of designing and analyzing medical research. The text gives special attention to the presentation and interpretation of results and the many real problems that arise in medical research.