Linguistic Fundamentals For Natural Language Processing

Author: Emily M. Bender
Publisher: Morgan & Claypool Publishers
ISBN: 1627050124
Size: 15.27 MB
Format: PDF, Mobi
View: 6125
Download
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages

Foundations Of Statistical Natural Language Processing

Author: Christopher D. Manning
Publisher: MIT Press
ISBN: 9780262133609
Size: 18.71 MB
Format: PDF, ePub, Mobi
View: 4060
Download
An introduction to statistical natural language processing (NLP). The text contains the theory and algorithms needed for building NLP tools. Topics covered include: mathematical and linguistic foundations; statistical methods; collocation finding; word sense disambiguation; and probalistic parsing.

The Oxford Handbook Of Computational Linguistics

Author: Ruslan Mitkov
Publisher: Oxford University Press
ISBN: 019927634X
Size: 59.50 MB
Format: PDF
View: 3354
Download
A state-of-the-art reference to one of the most active and productive fields in linguistics: computational linguistics. Thirty-eight chapters, commissioned from experts all over the world, describe the major concepts, methods, and applications. Part I provides an overview of the field; Part II describes current tasks, techniques, and tools in natural language processing; and Part III surveys current applications.

Neural Network Methods In Natural Language Processing

Author: Yoav Goldberg
Publisher: Morgan & Claypool Publishers
ISBN: 162705295X
Size: 64.13 MB
Format: PDF, ePub
View: 6828
Download
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Linguistic Structure Prediction

Author: Noah A. Smith
Publisher: Morgan & Claypool Publishers
ISBN: 1608454053
Size: 68.55 MB
Format: PDF, Kindle
View: 4617
Download
A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference

Introduction To Chinese Natural Language Processing

Author: Kam-Fai Wong
Publisher: Morgan & Claypool Publishers
ISBN: 1598299328
Size: 27.45 MB
Format: PDF, Kindle
View: 3540
Download
This book introduces Chinese language-processing issues and techniques to readers who already have a basic background in natural language processing (NLP). Since the major difference between Chinese and Western languages is at the word level, the book primarily focuses on Chinese morphological analysis and introduces the concept, structure, and interword semantics of Chinese words. The following topics are covered: a general introduction to Chinese NLP; Chinese characters, morphemes, and words and the characteristics of Chinese words that have to be considered in NLP applications; Chinese word segmentation; unknown word detection; word meaning and Chinese linguistic resources; interword semantics based on word collocation and NLP techniques for collocation extraction. Table of Contents: Introduction / Words in Chinese / Challenges in Chinese Morphological Processing / Chinese Word Segmentation / Unknown Word Identification / Word Meaning / Chinese Collocations / Automatic Chinese Collocation Extraction / Appendix / References / Author Biographies

Biomedical Natural Language Processing

Author: Kevin Bretonnel Cohen
Publisher: John Benjamins Publishing Company
ISBN: 9027271062
Size: 28.91 MB
Format: PDF, ePub, Docs
View: 273
Download
Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Natural Language Processing With Python

Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Size: 29.22 MB
Format: PDF, Mobi
View: 1305
Download
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Computational Modeling Of Narrative

Author: Inderjeet Mani
Publisher: Morgan & Claypool Publishers
ISBN: 1608459810
Size: 78.57 MB
Format: PDF, Mobi
View: 1990
Download
The field of narrative (or story) understanding and generation is one of the oldest in natural language processing (NLP) and artificial intelligence (AI), which is hardly surprising, since storytelling is such a fundamental and familiar intellectual and social activity. In recent years, the demands of interactive entertainment and interest in the creation of engaging narratives with life-like characters have provided a fresh impetus to this field. This book provides an overview of the principal problems, approaches, and challenges faced today in modeling the narrative structure of stories. The book introduces classical narratological concepts from literary theory and their mapping to computational approaches. It demonstrates how research in AI and NLP has modeled character goals, causality, and time using formalisms from planning, case-based reasoning, and temporal reasoning, and discusses fundamental limitations in such approaches. It proposes new representations for embedded narratives and fictional entities, for assessing the pace of a narrative, and offers an empirical theory of audience response. These notions are incorporated into an annotation scheme called NarrativeML. The book identifies key issues that need to be addressed, including annotation methods for long literary narratives, the representation of modality and habituality, and characterizing the goals of narrators. It also suggests a future characterized by advanced text mining of narrative structure from large-scale corpora and the development of a variety of useful authoring aids. This is the first book to provide a systematic foundation that integrates together narratology, AI, and computational linguistics. It can serve as a narratology primer for computer scientists and an elucidation of computational narratology for literary theorists. It is written in a highly accessible manner and is intended for use by a broad scientific audience that includes linguists (computational and formal semanticists), AI researchers, cognitive scientists, computer scientists, game developers, and narrative theorists.

Natural Language Annotation For Machine Learning

Author: James Pustejovsky
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359760
Size: 12.99 MB
Format: PDF
View: 6241
Download
Create your own natural language training corpus for machine learning. Whether you’re working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle—the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don’t need any programming or linguistics experience to get started. Using detailed examples at every step, you’ll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project. Define a clear annotation goal before collecting your dataset (corpus) Learn tools for analyzing the linguistic content of your corpus Build a model and specification for your annotation project Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework Create a gold standard corpus that can be used to train and test ML algorithms Select the ML algorithms that will process your annotated data Evaluate the test results and revise your annotation task Learn how to use lightweight software for annotating texts and adjudicating the annotations This book is a perfect companion to O’Reilly’s Natural Language Processing with Python.