Introduction To Stochastic Programming

Author: John R. Birge
Publisher: Springer Science & Business Media
ISBN: 1461402379
Size: 27.87 MB
Format: PDF, Mobi
View: 2298
Download
The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods. The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make 'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)

Modeling With Stochastic Programming

Author: Alan J. King
Publisher: Springer Science & Business Media
ISBN: 0387878173
Size: 21.56 MB
Format: PDF, Docs
View: 3921
Download
While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.

Multistage Stochastic Optimization

Author: Georg Ch. Pflug
Publisher: Springer
ISBN: 3319088432
Size: 40.81 MB
Format: PDF, ePub, Mobi
View: 5554
Download
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.

Numerical Optimization

Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387227423
Size: 64.17 MB
Format: PDF, ePub, Docs
View: 3784
Download
The new edition of this book presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on methods best suited to practical problems. This edition has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are widely used in practice and are the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience.

Stochastic Process Limits

Author: Ward Whitt
Publisher: Springer Science & Business Media
ISBN: 0387217487
Size: 33.58 MB
Format: PDF
View: 7166
Download
From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews

Stochastic Programming

Author: András Prékopa
Publisher: Springer Science & Business Media
ISBN: 9401730873
Size: 72.67 MB
Format: PDF, Kindle
View: 7775
Download
Stochastic programming - the science that provides us with tools to design and control stochastic systems with the aid of mathematical programming techniques - lies at the intersection of statistics and mathematical programming. The book Stochastic Programming is a comprehensive introduction to the field and its basic mathematical tools. While the mathematics is of a high level, the developed models offer powerful applications, as revealed by the large number of examples presented. The material ranges form basic linear programming to algorithmic solutions of sophisticated systems problems and applications in water resources and power systems, shipbuilding, inventory control, etc. Audience: Students and researchers who need to solve practical and theoretical problems in operations research, mathematics, statistics, engineering, economics, insurance, finance, biology and environmental protection.

Stochastic Programming

Author: Horand Gassmann
Publisher: World Scientific
ISBN: 981440750X
Size: 28.14 MB
Format: PDF
View: 6129
Download
This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems.

Introduction To Stochastic Search And Optimization

Author: James C. Spall
Publisher: John Wiley & Sons
ISBN: 0471441902
Size: 27.31 MB
Format: PDF
View: 4099
Download
A unique interdisciplinary foundation for real-world problem solving Stochastic search and optimization techniques are used in a vast number of areas, including aerospace, medicine, transportation, and finance, to name but a few. Whether the goal is refining the design of a missile or aircraft, determining the effectiveness of a new drug, developing the most efficient timing strategies for traffic signals, or making investment decisions in order to increase profits, stochastic algorithms can help researchers and practitioners devise optimal solutions to countless real-world problems. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control is a graduate-level introduction to the principles, algorithms, and practical aspects of stochastic optimization, including applications drawn from engineering, statistics, and computer science. The treatment is both rigorous and broadly accessible, distinguishing this text from much of the current literature and providing students, researchers, and practitioners with a strong foundation for the often-daunting task of solving real-world problems. The text covers a broad range of today’s most widely used stochastic algorithms, including: Random search Recursive linear estimation Stochastic approximation Simulated annealing Genetic and evolutionary methods Machine (reinforcement) learning Model selection Simulation-based optimization Markov chain Monte Carlo Optimal experimental design The book includes over 130 examples, Web links to software and data sets, more than 250 exercises for the reader, and an extensive list of references. These features help make the text an invaluable resource for those interested in the theory or practice of stochastic search and optimization.

Heavy Tail Phenomena

Author: Sidney I. Resnick
Publisher: Springer Science & Business Media
ISBN: 0387242724
Size: 46.87 MB
Format: PDF, Kindle
View: 4221
Download
This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. Heavy tails are characteristic of many phenomena where the probability of a single huge value impacts heavily. Record-breaking insurance losses, financial-log returns, files sizes stored on a server, transmission rates of files are all examples of heavy-tailed phenomena. Key features: * Unique text devoted to heavy-tails * Emphasizes both probability modeling and statistical methods for fitting models. Most treatments focus on one or the other but not both * Presents broad applicability of heavy-tails to the fields of data networks, finance (e.g., value-at- risk), insurance, and hydrology * Clear, efficient and coherent exposition, balancing theory and actual data to show the applicability and limitations of certain methods * Examines in detail the mathematical properties of the methodologies as well as their implementation in Splus or R statistical languages * Exposition driven by numerous examples and exercises Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use (or at least to learn) a statistics package such as R or Splus. This work will serve second-year graduate students and researchers in the areas of applied mathematics, statistics, operations research, electrical engineering, and economics.

Mathematical Risk Analysis

Author: Ludger Rüschendorf
Publisher: Springer Science & Business Media
ISBN: 364233590X
Size: 35.66 MB
Format: PDF, ePub, Docs
View: 7401
Download
The author's particular interest in the area of risk measures is to combine this theory with the analysis of dependence properties. The present volume gives an introduction of basic concepts and methods in mathematical risk analysis, in particular of those parts of risk theory that are of special relevance to finance and insurance. Describing the influence of dependence in multivariate stochastic models on risk vectors is the main focus of the text that presents main ideas and methods as well as their relevance to practical applications. The first part introduces basic probabilistic tools and methods of distributional analysis, and describes their use to the modeling of dependence and to the derivation of risk bounds in these models. In the second, part risk measures with a particular focus on those in the financial and insurance context are presented. The final parts are then devoted to applications relevant to optimal risk allocation, optimal portfolio problems as well as to the optimization of insurance contracts. Good knowledge of basic probability and statistics as well as of basic general mathematics is a prerequisite for comfortably reading and working with the present volume, which is intended for graduate students, practitioners and researchers and can serve as a reference resource for the main concepts and techniques.