Introduction To Differential Equations With Dynamical Systems

Author: Stephen L. Campbell
Publisher: Princeton University Press
ISBN: 1400841321
Size: 19.40 MB
Format: PDF, Docs
View: 4070
Download
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

Introduction To Differential Equations And Dynamical Systems

Author: Richard E. Williamson
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780072440669
Size: 29.96 MB
Format: PDF
View: 392
Download
This manual is available for sale to the student, and includes detailed step-by-step solutions to all odd-numbered problems throughout the text.

Ordinary Differential Equations And Dynamical Systems

Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821883283
Size: 42.49 MB
Format: PDF, Docs
View: 6675
Download
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Differential Equations Dynamical Systems And An Introduction To Chaos

Author: Morris W. Hirsch
Publisher: Academic Press
ISBN: 0123497035
Size: 16.55 MB
Format: PDF, ePub
View: 2462
Download
This text is about the dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. It is an update of one of Academic Press's most successful mathematics texts ever published, which has become the standard textbook for graduate courses in this area. The authors are tops in the field of advanced mathematics. Steve Smale is a Field's Medalist, which equates to being a Nobel prize winner in mathematics. Bob Devaney has authored several leading books in this subject area. Linear algebra prerequisites toned down from first edition Inclusion of analysis of examples of chaotic systems, including Lorenz, Rosssler, and Shilnikov systems Bifurcation theory included throughout.

Ordinary Differential Equations And Dynamical Systems

Author: Thomas C. Sideris
Publisher: Springer Science & Business Media
ISBN: 9462390215
Size: 34.47 MB
Format: PDF, ePub, Mobi
View: 648
Download
This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.

Differential Equations And Dynamical Systems

Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1461300037
Size: 36.55 MB
Format: PDF, ePub, Docs
View: 344
Download
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Nonlinear Differential Equations And Dynamical Systems

Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 3642971490
Size: 13.80 MB
Format: PDF, ePub, Docs
View: 4849
Download
Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.

Differential Equations A Dynamical Systems Approach

Author: John H. Hubbard
Publisher: Springer Science & Business Media
ISBN: 9780387972862
Size: 39.45 MB
Format: PDF, Kindle
View: 7618
Download
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.

An Introduction To Dynamical Systems

Author: Rex Clark Robinson
Publisher: American Mathematical Soc.
ISBN: 0821891359
Size: 11.89 MB
Format: PDF, Kindle
View: 7744
Download
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Differential Equations Dynamical Systems And An Introduction To Chaos

Author: Morris W. Hirsch
Publisher: Academic Press
ISBN: 0123820103
Size: 35.31 MB
Format: PDF, Mobi
View: 3115
Download
Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies