Informative Hypotheses

Author: Herbert Hoijtink
Publisher: CRC Press
ISBN: 1439880514
Size: 64.24 MB
Format: PDF, Docs
View: 5993
Download
When scientists formulate their theories, expectations, and hypotheses, they often use statements like: ``I expect mean A to be bigger than means B and C"; ``I expect that the relation between Y and both X1 and X2 is positive"; and ``I expect the relation between Y and X1 to be stronger than the relation between Y and X2". Stated otherwise, they formulate their expectations in terms of inequality constraints among the parameters in which they are interested, that is, they formulate Informative Hypotheses. There is currently a sound theoretical foundation for the evaluation of informative hypotheses using Bayes factors, p-values and the generalized order restricted information criterion. Furthermore, software that is often free is available to enable researchers to evaluate the informative hypotheses using their own data. The road is open to challenge the dominance of the null hypothesis for contemporary research in behavioral, social, and other sciences.

Latent Markov Models For Longitudinal Data

Author: Francesco Bartolucci
Publisher: CRC Press
ISBN: 1466583711
Size: 34.57 MB
Format: PDF, Docs
View: 2050
Download
Drawing on the authors’ extensive research in the analysis of categorical longitudinal data, Latent Markov Models for Longitudinal Data focuses on the formulation of latent Markov models and the practical use of these models. Numerous examples illustrate how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB® routines used for the examples are available on the authors’ website. The book provides you with the essential background on latent variable models, particularly the latent class model. It discusses how the Markov chain model and the latent class model represent a useful paradigm for latent Markov models. The authors illustrate the assumptions of the basic version of the latent Markov model and introduce maximum likelihood estimation through the Expectation-Maximization algorithm. They also cover constrained versions of the basic latent Markov model, describe the inclusion of the individual covariates, and address the random effects and multilevel extensions of the model. After covering advanced topics, the book concludes with a discussion on Bayesian inference as an alternative to maximum likelihood inference. As longitudinal data become increasingly relevant in many fields, researchers must rely on specific statistical and econometric models tailored to their application. A complete overview of latent Markov models, this book demonstrates how to use the models in three types of analysis: transition analysis with measurement errors, analyses that consider unobserved heterogeneity, and finding clusters of units and studying the transition between the clusters.

Bayesian Methods

Author: Jeff Gill
Publisher: CRC Press
ISBN: 1439862494
Size: 53.64 MB
Format: PDF, Kindle
View: 3863
Download
An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social Scientists Now that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of the procedures and less on justifying procedures. The expanded examples reflect this updated approach. New to the Third Edition A chapter on Bayesian decision theory, covering Bayesian and frequentist decision theory as well as the connection of empirical Bayes with James–Stein estimation A chapter on the practical implementation of MCMC methods using the BUGS software Greatly expanded chapter on hierarchical models that shows how this area is well suited to the Bayesian paradigm Many new applications from a variety of social science disciplines Double the number of exercises, with 20 now in each chapter Updated BaM package in R, including new datasets, code, and procedures for calling BUGS packages from R This bestselling, highly praised text continues to be suitable for a range of courses, including an introductory course or a computing-centered course. It shows students in the social and behavioral sciences how to use Bayesian methods in practice, preparing them for sophisticated, real-world work in the field.

Generalized Linear Models For Categorical And Continuous Limited Dependent Variables

Author: Michael Smithson
Publisher: CRC Press
ISBN: 1466551739
Size: 57.15 MB
Format: PDF, Kindle
View: 2056
Download
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit linear regression. They cover special cases or extensions of models, estimation methods, model diagnostics, and, of course, software. They also discuss bounded continuous variables, boundary-inflated models, and methods for modeling heteroscedasticity. Wherever possible, the authors have illustrated concepts, models, and techniques with real or realistic datasets and demonstrations in R and Stata, and each chapter includes several exercises at the end. The illustrations and exercises help readers build conceptual understanding and fluency in using these techniques. At several points the authors bring together material that has been previously scattered across the literature in journal articles, software package documentation files, and blogs. These features help students learn to choose the appropriate models for their purpose.

What If There Were No Significance Tests

Author: Lisa L. Harlow
Publisher: Routledge
ISBN: 1317242858
Size: 10.65 MB
Format: PDF, ePub
View: 3083
Download
The classic edition of What If There Were No Significance Tests? highlights current statistical inference practices. Four areas are featured as essential for making inferences: sound judgment, meaningful research questions, relevant design, and assessing fit in multiple ways. Other options (data visualization, replication or meta-analysis), other features (mediation, moderation, multiple levels or classes), and other approaches (Bayesian analysis, simulation, data mining, qualitative inquiry) are also suggested. The Classic Edition’s new Introduction demonstrates the ongoing relevance of the topic and the charge to move away from an exclusive focus on NHST, along with new methods to help make significance testing more accessible to a wider body of researchers to improve our ability to make more accurate statistical inferences. Part 1 presents an overview of significance testing issues. The next part discusses the debate in which significance testing should be rejected or retained. The third part outlines various methods that may supplement significance testing procedures. Part 4 discusses Bayesian approaches and methods and the use of confidence intervals versus significance tests. The book concludes with philosophy of science perspectives. Rather than providing definitive prescriptions, the chapters are largely suggestive of general issues, concerns, and application guidelines. The editors allow readers to choose the best way to conduct hypothesis testing in their respective fields. For anyone doing research in the social sciences, this book is bound to become "must" reading. Ideal for use as a supplement for graduate courses in statistics or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences, the book also benefits independent researchers in the behavioral and social sciences and those who teach statistics.

Handbook Of Item Response Theory Volume Three

Author: Wim J. van der Linden
Publisher: CRC Press
ISBN: 1466514442
Size: 75.70 MB
Format: PDF, ePub, Mobi
View: 3526
Download
Drawing on the work of internationally acclaimed experts in the field, Handbook of Item Response Theory, Volume 3: Applications presents applications of item response theory to practical testing problems. While item response theory may be known primarily for its advances in theoretical modeling of responses to test items, equal progress has been made in its providing innovative solutions to daily testing problems. This third volume in a three-volume set highlights the major applications. Specifically, this volume covers applications to test item calibration, item analysis, model fit checking, test-score interpretation, optimal test design, adaptive testing, standard setting, and forensic analyses of response data. It describes advances in testing in areas such as large-scale educational assessment, psychological testing, health measurement, and measurement of change. In addition, it extensively reviews computer programs available to run any of the models and applications in Volume One and Three. Features Includes contributions from internationally acclaimed experts with a history of advancing applications of item response theory Provides extensive cross-referencing and common notation across all chapters in this three-volume set Underscores the importance of treating each application in a statistically rigorous way Reviews major computer programs for item response theory analyses and applications. Wim J. van der Linden is a distinguished scientist and director of research and innovation at Pacific Metrics Corporation. Dr. van der Linden is also a professor emeritus of measurement and data analysis at the University of Twente. His research interests include test theory, adaptive testing, optimal test assembly, parameter linking, test equating, and response-time modeling as well as decision theory and its applications to problems of educational decision making.

Analysis Of Multivariate Social Science Data Second Edition

Author: David J. Bartholomew
Publisher: CRC Press
ISBN: 1584889616
Size: 24.76 MB
Format: PDF, ePub, Docs
View: 5923
Download
Drawing on the authors’ varied experiences working and teaching in the field, Analysis of Multivariate Social Science Data, Second Editionenables a basic understanding of how to use key multivariate methods in the social sciences. With updates in every chapter, this edition expands its topics to include regression analysis, confirmatory factor analysis, structural equation models, and multilevel models. After emphasizing the summarization of data in the first several chapters, the authors focus on regression analysis. This chapter provides a link between the two halves of the book, signaling the move from descriptive to inferential methods and from interdependence to dependence. The remainder of the text deals with model-based methods that primarily make inferences about processes that generate data. Relying heavily on numerical examples, the authors provide insight into the purpose and working of the methods as well as the interpretation of data. Many of the same examples are used throughout to illustrate connections between the methods. In most chapters, the authors present suggestions for further work that go beyond conventional exercises, encouraging readers to explore new ground in social science research. Requiring minimal mathematical and statistical knowledge, this book shows how various multivariate methods reveal different aspects of data and thus help answer substantive research questions.

Data Analysis With Mplus

Author: Christian Geiser
Publisher: Guilford Press
ISBN: 1462507824
Size: 24.72 MB
Format: PDF, Kindle
View: 654
Download
A practical introduction to using Mplus for the analysis of multivariate data, this volume provides step-by-step guidance, complete with real data examples, numerous screen shots, and output excerpts. The author shows how to prepare a data set for import in Mplus using SPSS. He explains how to specify different types of models in Mplus syntax and address typical caveats--for example, assessing measurement invariance in longitudinal SEMs. Coverage includes path and factor analytic models as well as mediational, longitudinal, multilevel, and latent class models. Specific programming tips and solution strategies are presented in boxes in each chapter. The companion website (http://crmda.ku.edu/guilford/geiser) features data sets, annotated syntax files, and output for all of the examples. Of special utility to instructors and students, many of the examples can be run with the free demo version of Mplus.

Big Data And Social Science

Author: Ian Foster
Publisher: CRC Press
ISBN: 1498751431
Size: 11.44 MB
Format: PDF, ePub, Docs
View: 4253
Download
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Handbook Of Item Response Theory Three Volume Set

Author: Wim J. van der Linden
Publisher: CRC Press
ISBN: 1351645455
Size: 24.73 MB
Format: PDF, ePub
View: 4641
Download
Drawing on the work of 75 internationally acclaimed experts in the field, Handbook of Item Response Theory, Three-Volume Set presents all major item response models, classical and modern statistical tools used in item response theory (IRT), and major areas of applications of IRT in educational and psychological testing, medical diagnosis of patient-reported outcomes, and marketing research. It also covers CRAN packages, WinBUGS, Bilog MG, Multilog, Parscale, IRTPRO, Mplus, GLLAMM, Latent Gold, and numerous other software tools. A full update of editor Wim J. van der Linden and Ronald K. Hambleton’s classic Handbook of Modern Item Response Theory, this handbook has been expanded from 28 chapters to 85 chapters in three volumes. The three volumes are thoroughly edited and cross-referenced, with uniform notation, format, and pedagogical principles across all chapters. Each chapter is self-contained and deals with the latest developments in IRT.