Inelastic Analysis Of Solids And Structures

Author: M. Kojic
Publisher: Springer Science & Business Media
ISBN: 3540265074
Size: 28.98 MB
Format: PDF, Kindle
View: 207
Download
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.

The Finite Element Analysis Of Shells Fundamentals

Author: Dominique Chapelle
Publisher: Springer Science & Business Media
ISBN: 9783540413394
Size: 36.83 MB
Format: PDF
View: 6503
Download
Shell structures are found abundantly in engineering designs and are routinely analyzed with finite element methods. The objective of this book is to present, in a unified manner, modern finite element procedures for general shell analysis. The first chapters introduce the basic concepts for the analysis of shells, explain the mathematical preliminaries, and discuss the mathematical models of plates and shells including their asymptotic properties. The following chapters deal with finite element discretization methods for plates and shells. At the end of the book, applications of these methods in modern engineering practice are described and an overview of nonlinear shell analysis is given.

The Mechanics Of Solids And Structures Hierarchical Modeling And The Finite Element Solution

Author: Miguel Luiz Bucalem
Publisher: Springer
ISBN: 9783642266836
Size: 32.91 MB
Format: PDF, Docs
View: 471
Download
In the recent decades, computational procedures have been applied to an increasing extent in engineering and the physical sciences. Mostly, two separate fields have been considered, namely, the analysis of solids and structures and the analysis of fluid flows. These continuous advances in analyses are of much interest to physicists, mathematicians and in particular, engineers. Also, computational fluid and solid mechanics are no longer treated as entirely separate fields of applications, but instead, coupled fluid and solid analysis is being pursued. The objective of the Book Series is to publish monographs, textbooks, and proceedings of conferences of archival value, on any subject of computational fluid dynamics, computational solid and structural mechanics, and computational multi-physics dynamics. The publications are written by and for physicists, mathematicians and engineers and are to emphasize the modeling, analysis and solution of problems in engineering.

The Mechanics Of Solids And Structures Hierarchical Modeling And The Finite Element Solution

Author: Miguel Luiz Bucalem
Publisher: Springer Science & Business Media
ISBN: 9783540264002
Size: 65.75 MB
Format: PDF, ePub, Docs
View: 503
Download
In the recent decades, computational procedures have been applied to an increasing extent in engineering and the physical sciences. Mostly, two separate fields have been considered, namely, the analysis of solids and structures and the analysis of fluid flows. These continuous advances in analyses are of much interest to physicists, mathematicians and in particular, engineers. Also, computational fluid and solid mechanics are no longer treated as entirely separate fields of applications, but instead, coupled fluid and solid analysis is being pursued. The objective of the Book Series is to publish monographs, textbooks, and proceedings of conferences of archival value, on any subject of computational fluid dynamics, computational solid and structural mechanics, and computational multi-physics dynamics. The publications are written by and for physicists, mathematicians and engineers and are to emphasize the modeling, analysis and solution of problems in engineering.

Computational Fluid And Solid Mechanics 2003

Author: K.J Bathe
Publisher: Elsevier
ISBN: 9780080529479
Size: 24.49 MB
Format: PDF, ePub, Mobi
View: 2204
Download
Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design. The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

Non Linear Modeling And Analysis Of Solids And Structures

Author: Steen Krenk
Publisher: Cambridge University Press
ISBN: 0521830540
Size: 31.71 MB
Format: PDF, Mobi
View: 1159
Download
This book presents a theoretical treatment of nonlinear behaviour of solids and structures in such a way that it is suitable for numerical computation, typically using the Finite Element Method. Starting out from elementary concepts, the author systematically uses the principle of virtual work, initially illustrated by truss structures, to give a self-contained and rigorous account of the basic methods. The author illustrates the combination of translations and rotations by finite deformation beam theories in absolute and co-rotation format, and describes the deformation of a three-dimensional continuum in material form. A concise introduction to finite elasticity is followed by an extension to elasto-plastic materials via internal variables and the maximum dissipation principle. Finally, the author presents numerical techniques for solution of the nonlinear global equations and summarises recent results on momentum and energy conserving integration of time-dependent problems. Exercises, examples and algorithms are included throughout.

Mechanical Response Of Composites

Author: Pedro P. Camanho
Publisher: Springer Science & Business Media
ISBN: 1402085842
Size: 12.17 MB
Format: PDF
View: 4024
Download
Themethodologyfordesigninghigh-performancecompositestructuresisstill evo- ing. The complexity of the response of composite materials and the dif?culties in predicting the composite material properties from the basic properties of the c- stituents result in the need for a well-planned and exhaustive test program. The recommended practice to mitigate the technological risks associated with advanced composite materials is to substantiate the performance and durability of the design in a sequence of steps known as the Building Block Approach. The Building Block Approach ensures that cost and performance objectives are met by testing greater numbers of smaller, less expensive specimens. In this way, technology risks are assessed early in the program. In addition, the knowledge acquired at a given level of structural complexity is built up before progressing to a level of increased complexity. Achieving substantiation of structural performance by testing alone can be p- hibitively expensive because of the number of specimens and components required to characterize all material systems, loading scenarios and boundary conditions. Building Block Approachprogramscan achieve signi?cant cost reductionsby se- ing a synergy between testing and analysis. The more the development relies on analysis, the less expensive it becomes. The use of advanced computational models for the prediction of the mechanical response of composite structures can replace some of the mechanical tests and can signi?cantly reduce the cost of designing with composites while providing to the engineers the information necessary to achieve an optimized design.

Computational Methods In Nonlinear Structural And Solid Mechanics

Author: Ahmed K. Noor
Publisher: Elsevier
ISBN: 1483145646
Size: 60.34 MB
Format: PDF, Mobi
View: 5960
Download
Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.

Computational Methods In Elasticity And Plasticity

Author: A. Anandarajah
Publisher: Springer Science & Business Media
ISBN: 9781441963796
Size: 43.56 MB
Format: PDF, Mobi
View: 1326
Download
Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.