How To Prove It

Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 1139450972
Size: 17.32 MB
Format: PDF, ePub, Mobi
View: 6291
Download
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

How To Prove It

Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 9780521675994
Size: 68.90 MB
Format: PDF, ePub, Mobi
View: 5291
Download
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

How To Prove It

Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 9780521446631
Size: 41.96 MB
Format: PDF, ePub, Mobi
View: 217
Download
Many mathematics students have trouble the first time they take a course, such as linear algebra, abstract algebra, introductory analysis, or discrete mathematics, in which they are asked to prove various theorems. This textbook will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed "scratchwork" sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. Numerous exercises give students the opportunity to construct their own proofs. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

How To Think Like A Mathematician

Author: Kevin Houston
Publisher: Cambridge University Press
ISBN: 9781139477055
Size: 71.72 MB
Format: PDF, Mobi
View: 6470
Download
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Proofs And Fundamentals

Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 1461221307
Size: 14.16 MB
Format: PDF, ePub, Docs
View: 2861
Download
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

Proofs From The Book

Author: Martin Aigner
Publisher: Springer
ISBN: 3662442051
Size: 49.60 MB
Format: PDF
View: 6711
Download
This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questio ns so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.

An Introduction To Mathematical Reasoning

Author: Peter J. Eccles
Publisher: Cambridge University Press
ISBN: 9780521597180
Size: 41.49 MB
Format: PDF, ePub, Docs
View: 5418
Download
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.

Book Of Proof

Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Size: 55.14 MB
Format: PDF, Kindle
View: 5807
Download
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Naive Set Theory

Author: Paul R. Halmos
Publisher: Courier Dover Publications
ISBN: 0486814874
Size: 13.90 MB
Format: PDF, Mobi
View: 1713
Download
Classic by prominent mathematician offers a concise introduction to set theory using language and notation of informal mathematics. Topics include the basic concepts of set theory, cardinal numbers, transfinite methods, more. 1960 edition.

An Introduction To Formal Logic

Author: Peter Smith
Publisher: Cambridge University Press
ISBN: 9780521008044
Size: 27.66 MB
Format: PDF, ePub, Docs
View: 1935
Download
Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.