High Temperature Deformation And Fracture Of Materials

Author: Jun-Shan Zhang
Publisher: Elsevier
ISBN: 0857090801
Size: 11.88 MB
Format: PDF, ePub, Docs
View: 2237
Download
The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. Analyses creep behaviour of materials, the evolution of dislocation substructures during creep, dislocation motion at elevated temperatures and importantly, recovery-creep theories of pure metals Examines high temperature fracture, including nucleation of creep cavity, diffusional growth and constrained growth of creep cavities A valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life

9 12cr Heat Resistant Steels

Author: Wei Yan
Publisher: Springer
ISBN: 3319148397
Size: 45.99 MB
Format: PDF, Mobi
View: 1699
Download
With China becoming a major force in steel research and development, this book highlights the work of a group from the Chinese Academy of Sciences, led by the first four authors. This group has the ideal knowledge base for writing this updated book on heat-resistant steels. The fifth author, Sha, based in the UK, has been collaborating with the Chinese group since 2009 and is the lead or sole author of four research books, all published in English. The last book, “Steels: from materials science to structural engineering,” was published by Springer in 2013. Within two months of its publication, researchers at the University of Science and Technology Liaoning had requested translation of the book into Chinese. Springer obliged, and the Chinese version was published by the Metallurgical Industry Press, Beijing, in August 2014. Sha has organized and completed the writing of the proposed book, though the main research was done in China.

Hypersingular Integral Equations In Fracture Analysis

Author: Whye-Teong Ang
Publisher: Elsevier
ISBN: 0857094807
Size: 16.43 MB
Format: PDF, Mobi
View: 3315
Download
Hypersingular Integral Equations in Fracture Analysis explains how plane elastostatic crack problems may be formulated and solved in terms of hypersingular integral equations. The unknown functions in the hypersingular integral equations are the crack opening displacements. Once the hypersingular integral equations are solved, the crack tip stress intensity factors, which play an important role in fracture analysis, may be easily computed. This title consists of six chapters: Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; Hypersingular integral equations for coplanar cracks in anisotropic elastic media; Numerical methods for solving hypersingular integral equations; Hypersingular boundary integral equation method for planar cracks in an anisotropic elastic body; A numerical Green's function boundary integral approach for crack problems; and Edge and curved cracks and piezoelectric cracks. This book provides a clear account of the hypersingular integral approach for fracture analysis, gives in complete form the hypersingular integral equations for selected crack problems, and lists FORTRAN programs of numerical methods for solving hypersingular integral equations. Explains the hypersingular integral approach using specific and progressively more complex crack problems Gives hypersingular integral equations for selected crack problems in complete form Lists computer codes in FORTRAN for the numerical solution of hypersingular integral equations

Materials Ageing And Degradation In Light Water Reactors

Author: K L Murty
Publisher: Elsevier
ISBN: 0857097458
Size: 36.40 MB
Format: PDF, ePub
View: 1225
Download
Light water reactors (LWRs) are the predominant class of nuclear power reactors in operation today; however, ageing and degradation can influence both their performance and lifetime. Knowledge of these factors is therefore critical to safe, continuous operation. Materials ageing and degradation in light water reactors provides a comprehensive guide to prevalent deterioration mechanisms, and the approaches used to handle their effects. Part one introduces fundamental ageing issues and degradation mechanisms. Beginning with an overview of ageing and degradation issues in LWRs, the book goes on to discuss corrosion in pressurized water reactors and creep deformation of materials in LWRs. Part two then considers materials’ ageing and degradation in specific LWR components. Applications of zirconium alloys in LWRs are discussed, along with the ageing of electric cables. Materials management strategies for LWRs are then the focus of part three. Materials management strategies for pressurized water reactors and VVER reactors are considered before the book concludes with a discussion of materials-related problems faced by LWR operators and corresponding research needs. With its distinguished editor and international team of expert contributors, Materials ageing and degradation in light water reactors is an authoritative review for anyone requiring an understanding of the performance and durability of this type of nuclear power plant, including plant operators and managers, nuclear metallurgists, governmental and regulatory safety bodies, and researchers, scientists and academics working in this area. Introduces the fundamental ageing issues and degradation mechanisms associated with this class of nuclear power reactors Considers materials ageing and degradation in specific light water reactor components, including properties, performance and inspection Chapters also focus on material management strategies

Introduction To Aerospace Materials

Author: Adrian P Mouritz
Publisher: Elsevier
ISBN: 0857095153
Size: 64.73 MB
Format: PDF, Kindle
View: 5744
Download
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications. The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters. With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys

Gaseous Hydrogen Embrittlement Of Materials In Energy Technologies

Author: Richard P Gangloff
Publisher: Elsevier
ISBN: 0857095374
Size: 71.65 MB
Format: PDF, ePub, Docs
View: 4827
Download
Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies. Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems. With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure Chapters review mechanisms of hydrogen embrittlement including absorption, diffusion and trapping of hydrogen in metals Analyses ways of modelling hydrogen-induced damage and assessing service life

Composites Technologies For 2020

Author: L. Ye
Publisher: Woodhead Publishing
ISBN: 9781855738317
Size: 14.12 MB
Format: PDF
View: 2330
Download
The Asian-Australasian Association for Composite Materials (AACM) has been playing a leading role in the field of composite science and technology since its inception in 1997. AACM aims to encourage the interchange of knowledge in all aspects of composite materials both in the scientific and engineering communities. Following the success of the first three ACCM conferences ACCM 4 was held in Sydney, Australia, in July 2004. Composite technologies for 2020 provides current state-of-the-art achievements and recent advances in composite science and technologies bringing together leading experts and innovators in the field. Nearly 200 selected papers, classified under 18 different categories ranging from general manufacturing and processing techniques to the latest and hottest topics such as nano-composites and eco-bio composites. Together they represent an authorative documentation of current advances in the field of composite materials.