Handbook Of Optical Dimensional Metrology

Author: Kevin Harding
Publisher: Taylor & Francis
ISBN: 1439854823
Size: 56.13 MB
Format: PDF, ePub, Docs
View: 4726
Download
Due to their speed, data density, and versatility, optical metrology tools play important roles in today’s high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods. The book first builds a foundation for evaluating optical measurement methods. It explores the many terms of optical metrology and compares it to other forms of metrology, such as mechanical gaging, highlighting the limitations and errors associated with each mode of measurement at a general level. This comparison is particularly helpful to current industry users who operate the most widely applied mechanical tools. The book then focuses on each application area of measurement, working down from large area to medium-sized to submicron measurements. It describes the measurement of large objects on the scale of buildings, the measurement of durable manufactured goods such as aircraft engines and appliances, and the measurement of fine features on the micron and nanometer scales. In each area, the book covers fast, coarse measures as well as the finest measurements possible. Best practices and practical examples for each technology aid readers in effectively using the methods. Requiring no prior expertise in optical dimensional metrology, this handbook helps engineers and quality specialists understand the capabilities and limitations of optical metrology methods. It also shows them how to successfully apply optical metrology to a vast array of current engineering and scientific problems.

Handbook Of 3d Machine Vision

Author: Song Zhang
Publisher: Taylor & Francis
ISBN: 1439872201
Size: 47.31 MB
Format: PDF
View: 2920
Download
With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, Handbook of 3D Machine Vision: Optical Metrology and Imaging gives an extensive, in-depth look at the most popular 3D imaging techniques. It focuses on noninvasive, noncontact optical methods (optical metrology and imaging). The handbook begins with the well-studied method of stereo vision and explains how random speckle patterns or space-time varying patterns substantially improve the results of stereo vision. It then discusses stereo particle image velocimetry as a major experimental means in fluid dynamics, the robust and easy-to-implement structured-light technique for computer science applications, digital holography for performing micro- to nanoscale measurements, and grating, interferometry, and fringe projection techniques for precisely measuring dynamically deformable natural objects. The book goes on to describe techniques that do not require triangulation to recover a 3D shape, including time-of-flight techniques and uniaxial 3D shape measurement, as well as 3D measurement techniques that are not restricted to surface capture, such as 3D ultrasound, optical coherence tomography, and 3D endoscopy. The book also explores how novel 3D imaging techniques are being applied in the promising field of biometrics—which may prove essential to security and public safety. Written by key players in the field and inventors of important imaging technologies, this authoritative, state-of-the-art handbook helps you understand the core of 3D imaging technology and choose the proper 3D imaging technique for your needs. For each technique, the book provides its mathematical foundations, summarizes its successful applications, and discusses its limitations.

Laser Based Measurements For Time And Frequency Domain Applications

Author: Pasquale Maddaloni
Publisher: Taylor & Francis
ISBN: 1439841535
Size: 55.32 MB
Format: PDF, Mobi
View: 1175
Download
Foreword by Nobel laureate Professor Theodor W. Hänsch of Ludwig-Maximilians-Universität München Based on the authors’ experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications. After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions. Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas—including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology—revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.

Molded Optics

Author: Michael Schaub
Publisher: CRC Press
ISBN: 9781439832585
Size: 62.33 MB
Format: PDF
View: 6937
Download
While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as mitigating stray light and mating systems by eye. The first three chapters of the book focus on subjects important to the design of systems using molded optics: optical design, visual optics, and stray light. Following these background chapters, the text provides in-depth information on the design and manufacture of molded plastic optics, molded glass optics, and molded infrared optics. The final chapter on testing emphasizes the special characteristics of molded optics. Experts in their particular areas, the authors draw on their considerable knowledge and real-world experiences to give a thorough account of the design and manufacture of molded plastic, glass, and infrared optics. The book will help readers improve their ability to develop systems that employ molded optics.

Handbook Of Optical Metrology

Author: Toru Yoshizawa
Publisher: CRC Press
ISBN: 1351831844
Size: 58.60 MB
Format: PDF, Docs
View: 269
Download
Handbook of Optical Metrology: Principles and Applications begins by discussing key principles and techniques before exploring practical applications of optical metrology. Designed to provide beginners with an introduction to optical metrology without sacrificing academic rigor, this comprehensive text: Covers fundamentals of light sources, lenses, prisms, and mirrors, as well as optoelectronic sensors, optical devices, and optomechanical elements Addresses interferometry, holography, and speckle methods and applications Explains Moiré metrology and the optical heterodyne measurement method Delves into the specifics of diffraction, scattering, polarization, and near-field optics Considers applications for measuring length and size, displacement, straightness and parallelism, flatness, and three-dimensional shapes This new Second Edition is fully revised to reflect the latest developments. It also includes four new chapters—nearly 100 pages—on optical coherence tomography for industrial applications, interference microscopy for surface structure analysis, noncontact dimensional and profile metrology by video measurement, and optical metrology in manufacturing technology.

Handbook Of Optical Sensors

Author: Jose Luis Santos
Publisher: CRC Press
ISBN: 1439866864
Size: 40.15 MB
Format: PDF, Kindle
View: 1718
Download
Handbook of Optical Sensors provides a comprehensive and integrated view of optical sensors, addressing the fundamentals, structures, technologies, applications, and future perspectives. Featuring chapters authored by recognized experts and major contributors to the field, this essential reference: Explains the basic aspects of optical sensors and the principles of optical metrology, presenting a brief historical review Explores the role of optical waveguides in sensing and discusses sensor technologies based on intensity and phase modulation, fluorescence, and plasmonic waves Describes wavefront sensing, multiphoton microscopy, and imaging based on optical coherence tomography Covers optical fiber sensing, from light guiding in standard and microstructured optical fibers to sensor multiplexing, distributed sensing, and fiber Bragg grating Offers a broad perspective of the field and identifies trends that could shape the future, such as metamaterials and entangled quantum states of light Handbook of Optical Sensors is an ideal resource for practitioners and those seeking optical solutions for their specific needs, as well as for students and investigators who are the intellectual driving force of optical sensing.

Polarized Light And The Mueller Matrix Approach

Author: Jose Jorge Gil Perez
Publisher: CRC Press
ISBN: 1315355256
Size: 12.58 MB
Format: PDF, ePub, Mobi
View: 7198
Download
An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena Polarized Light and the Mueller Matrix Approach thoroughly and cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology. The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and Mueller–Jones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices. The authors proceed to interpret arbitrary decomposition and other interesting parallel decompositions as well as compare the powerful serial decompositions of depolarizing Mueller matrix M. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. The book concludes with useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media. Suitable for novices and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.

Singular Optics

Author: Gregory J. Gbur
Publisher: CRC Press
ISBN: 146658078X
Size: 46.88 MB
Format: PDF, ePub, Mobi
View: 6902
Download
"This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." —Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." —Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." —Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave’s properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities.

Laser Based Measurements For Time And Frequency Domain Applications

Author: Pasquale Maddaloni
Publisher: Taylor & Francis
ISBN: 1439841535
Size: 46.84 MB
Format: PDF, ePub, Docs
View: 4592
Download
Foreword by Nobel laureate Professor Theodor W. Hänsch of Ludwig-Maximilians-Universität München Based on the authors’ experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications. After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions. Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas—including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology—revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.

Handbook Of Silicon Photonics

Author: Laurent Vivien
Publisher: Taylor & Francis
ISBN: 1439836116
Size: 43.98 MB
Format: PDF, ePub, Mobi
View: 5042
Download
The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors, multiplexers, light sources, and various subsystems, have been developed that take advantage of state-of-the-art silicon technology. Suitable for both specialists and newcomers, Handbook of Silicon Photonics presents a coherent and comprehensive overview of this field from the fundamentals to integrated systems and applications. It covers a broad spectrum of materials and applications, emphasizing passive and active photonic devices, fabrication, integration, and the convergence with CMOS technology. The book’s self-contained chapters are written by international experts from academia and various photonics-related industries. The handbook starts with the basics of silicon as an optical material. It then describes the building blocks needed to drive integrated silicon photonic circuits and explains how these building blocks are incorporated in complex photonic/electronic circuits. The book also presents applications of silicon photonics in numerous fields, including biophotonics and photovoltaics. With many illustrations, including some in color, this handbook provides an up-to-date reference to the broad and rapidly changing area of silicon photonics. It shows how basic science and innovative technological applications are pushing the field forward.