Generalized Estimating Equations Second Edition

Author: James W. Hardin
Publisher: CRC Press
ISBN: 1439881138
Size: 60.89 MB
Format: PDF, Docs
View: 1621
Download
Generalized Estimating Equations, Second Edition updates the best-selling previous edition, which has been the standard text on the subject since it was published a decade ago. Combining theory and application, the text provides readers with a comprehensive discussion of GEE and related models. Numerous examples are employed throughout the text, along with the software code used to create, run, and evaluate the models being examined. Stata is used as the primary software for running and displaying modeling output; associated R code is also given to allow R users to replicate Stata examples. Specific examples of SAS usage are provided in the final chapter as well as on the book’s website. This second edition incorporates comments and suggestions from a variety of sources, including the Statistics.com course on longitudinal and panel models taught by the authors. Other enhancements include an examination of GEE marginal effects; a more thorough presentation of hypothesis testing and diagnostics, covering competing hierarchical models; and a more detailed examination of previously discussed subjects. Along with doubling the number of end-of-chapter exercises, this edition expands discussion of various models associated with GEE, such as penalized GEE, cumulative and multinomial GEE, survey GEE, and quasi-least squares regression. It also offers a thoroughly new presentation of model selection procedures, including the introduction of an extension to the QIC measure that is applicable for choosing among working correlation structures. See Professor Hilbe discuss the book.

Generalized Estimating Equations

Author: Andreas Ziegler
Publisher: Springer Science & Business Media
ISBN: 9781461404996
Size: 25.27 MB
Format: PDF
View: 7001
Download
Generalized estimating equations have become increasingly popular in biometrical, econometrical, and psychometrical applications because they overcome the classical assumptions of statistics, i.e. independence and normality, which are too restrictive for many problems. Therefore, the main goal of this book is to give a systematic presentation of the original generalized estimating equations (GEE) and some of its further developments. Subsequently, the emphasis is put on the unification of various GEE approaches. This is done by the use of two different estimation techniques, the pseudo maximum likelihood (PML) method and the generalized method of moments (GMM). The author details the statistical foundation of the GEE approach using more general estimation techniques. The book could therefore be used as basis for a course to graduate students in statistics, biostatistics, or econometrics, and will be useful to practitioners in the same fields.

Generalized Estimating Equations Second Edition

Author: James W. Hardin
Publisher: CRC Press
ISBN: 1439881146
Size: 70.78 MB
Format: PDF, ePub, Mobi
View: 3002
Download
Generalized Estimating Equations, Second Edition updates the best-selling previous edition, which has been the standard text on the subject since it was published a decade ago. Combining theory and application, the text provides readers with a comprehensive discussion of GEE and related models. Numerous examples are employed throughout the text, along with the software code used to create, run, and evaluate the models being examined. Stata is used as the primary software for running and displaying modeling output; associated R code is also given to allow R users to replicate Stata examples. Specific examples of SAS usage are provided in the final chapter as well as on the book’s website. This second edition incorporates comments and suggestions from a variety of sources, including the Statistics.com course on longitudinal and panel models taught by the authors. Other enhancements include an examination of GEE marginal effects; a more thorough presentation of hypothesis testing and diagnostics, covering competing hierarchical models; and a more detailed examination of previously discussed subjects. Along with doubling the number of end-of-chapter exercises, this edition expands discussion of various models associated with GEE, such as penalized GEE, cumulative and multinomial GEE, survey GEE, and quasi-least squares regression. It also offers a thoroughly new presentation of model selection procedures, including the introduction of an extension to the QIC measure that is applicable for choosing among working correlation structures. See Professor Hilbe discuss the book.

Markov Chain Marginal Bootstrap For Generalized Estimating Equations

Author: Di Li
Publisher: ProQuest
ISBN: 9780549340836
Size: 16.59 MB
Format: PDF, ePub, Mobi
View: 5129
Download
Longitudinal data are characterized by repeated measures over time on each subject. The generalized estimating equations (GEE) approach (Liang and Zeger, 1996) has been widely used for the analysis of longitudinal data. The ordinary GEE approach can be robustified through the use of truncated robust estimating functions. Statistical inference on the robust GEE is often based on the asymptotic normality of the estimators, and the asymptotic variance-covariance of the regression parameter estimates can be obtained from a sandwich formula. However, this asymptotic variance-covariance matrix may depend on unknown error density functions. Direct estimation of this matrix can be difficult and unreliable since it depends quite heavily on the nonparametric density estimation. Resampling methods provide an alternative way for estimating the variance of the regression parameter estimates. In this thesis, we extend the Markov chain marginal bootstrap (MCMB) (He and Hu, 2002) to statistical inference for robust GEE estimators with longitudinal data, allowing the estimating functions to be non-smooth and the responses correlated within subjects. By decomposing the problem into one-dimensions and solving the marginal estimating equations at each step instead of solving a p--dimensional system of equations, the MCMB method renders more control to the problem and offers advantages over traditional bootstrap methods for robust GEE estimators where the estimating equation may not be easy to solve. Empirical investigations show favorable performance of the MCMB method in accuracy and reliability compared with the traditional way of inference by direct estimation of the asymptotic variance-covariance.

Generalized Estimating Equations For Mixed Models

Author: Lulah Alnaji
Publisher:
ISBN:
Size: 14.98 MB
Format: PDF, Docs
View: 5616
Download
Most statistical approaches of molding the relationship between the explanatory variables and the responses assume subjects are independent. However, in clinical studies the longitudinal data are quite common. In this type of data, each subject is assessed repeatedly over a period of time. Therefore, the independence assumption is unlikely to be valid with longitudinal data due to the correlated observations of each subject. Generalized estimating equations method is a popular choice for longitudinal studies. It is an efficient method since it takes the within-subjects correlation into account by introducing a working correlation matrix. Although the generalized estimating equations' methodology considers correlation among the repeated observations on the same subject, it ignores the between-subject correlation and assumes subjects are independent. The objective of this dissertation is to provide an extension to the generalized estimating equations to take both within-subject and between-subject correlations into account by incorporating the random effect b to the model. If our interest focuses on the regression coefficients, we regard the correlation parameter as nuisance and estimate the fixed effects " using the estimating equations. If our interest focuses either on both the correlation parameter and the variance of the random effects or on the coefficient parameters and the association structure, then building an additional system of estimating equations analogous to the first estimating equations can serve to estimate either the correlation parameter and coefficients parameter, simultaneously or the variance of the random effects and the coefficient parameter, simultaneously. This estimating equations method has no closed form solution and can be solved iteratively. For example, Newton-Raphson is a popular iterative method to be used. We illustrate through simulation studies and real data applications the performance of the proposed methods in terms of bias and efficiency. Moreover, we investigate their behaviors compared to those for existing methods such as generalized estimating equations (GEE), generalized linear models (GLM) and generalized linear mixed models (GLMM). For further studying the performance of newly proposed method, the new approach is applied to the epilepsy data that was studied by many others Fitzmaurice, Laird, and Ware (2012).

Analysis Of Repeated Measures Data

Author: M. Ataharul Islam
Publisher: Springer
ISBN: 9811037949
Size: 51.43 MB
Format: PDF, ePub, Docs
View: 2663
Download
This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first and higher orders are used for conditional models in addition to conditional probabilities as a function of covariates. Similarly, joint models are developed using both marginal-conditional probabilities as well as joint probabilities as a function of covariates. In addition to generalized linear models for bivariate outcomes, it highlights extended semi-parametric models for continuous failure time data and their applications in order to include models for a broader range of outcome variables that researchers encounter in various fields. The book further discusses the problem of analysing repeated measures data for failure time in the competing risk framework, which is now taking on an increasingly important role in the field of survival analysis, reliability and actuarial science. Details on how to perform the analyses are included in each chapter and supplemented with newly developed R packages and functions along with SAS codes and macro/IML. It is a valuable resource for researchers, graduate students and other users of statistical techniques for analysing repeated measures data.

Correlated Data Analysis Modeling Analytics And Applications

Author: Xue-Kun Song
Publisher: Springer Science & Business Media
ISBN: 0387713921
Size: 76.91 MB
Format: PDF, ePub, Docs
View: 2299
Download
This book covers recent developments in correlated data analysis, using the class of dispersion models as marginal components in the formulation of joint models for correlated data. Much new material is covered here that you won’t find elsewhere.

Longitudinal Data Analysis

Author: Donald Hedeker
Publisher: John Wiley & Sons
ISBN: 0470036478
Size: 34.46 MB
Format: PDF, ePub, Docs
View: 2145
Download
Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

Generalized Linear Models And Extensions Second Edition

Author: James William Hardin
Publisher: Stata Press
ISBN: 1597180149
Size: 45.43 MB
Format: PDF, ePub
View: 3473
Download
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.

Quasi Least Squares Regression

Author: Justine Shults
Publisher: CRC Press
ISBN: 1420099930
Size: 34.70 MB
Format: PDF, Kindle
View: 5711
Download
Drawing on the authors’ substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression—a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitudinal data, familial data, and data with multiple sources of correlation. In some settings, QLS also allows for improved analysis with an unstructured correlation matrix. Special focus is given to goodness-of-fit analysis as well as new strategies for selecting the appropriate working correlation structure for QLS and GEE. A chapter on longitudinal binary data tackles recent issues raised in the statistical literature regarding the appropriateness of semi-parametric methods, such as GEE and QLS, for the analysis of binary data; this chapter includes a comparison with the first-order Markov maximum-likelihood (MARK1ML) approach for binary data. Examples throughout the book demonstrate each topic of discussion. In particular, a fully worked out example leads readers from model building and interpretation to the planning stages for a future study (including sample size calculations). The code provided enables readers to replicate many of the examples in Stata, often with corresponding R, SAS, or MATLAB® code offered in the text or on the book’s website.