Fundamentals Of Combustion Processes

Author: Sara McAllister
Publisher: Springer Science & Business Media
ISBN: 9781441979438
Size: 63.89 MB
Format: PDF, ePub, Docs
View: 943
Download
Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations

Boilers

Author: Kumar Rayaprolu
Publisher: CRC Press
ISBN: 1466500530
Size: 75.83 MB
Format: PDF
View: 7392
Download
Following the publication of the author’s first book, Boilers for Power and Process by CRC Press in 2009, several requests were made for a reference with even quicker access to information. Boilers: A Practical Reference is the result of those requests, providing a user-friendly encyclopedic format with more than 500 entries and nearly the same number of supporting illustrations. Written for practicing engineers and dealing with practical issues rather than theory, this reference focuses exclusively on water tube boilers found in process industries and power plants. It provides broad explanations for the following topics: A range of boilers and main auxiliaries, as well as steam and gas turbines Traditional firing techniques—grates, oil/gas, and modern systems Industrial, utility, waste heat, MSW and bio-fuel-fired boilers, including supercritical boilers The scientific fundamentals of combustion, heat transfer, fluid flow, and more The basics of fuels, water, ash, high-temperature steels, structurals, refractory, insulation, and more Additional engineering topics like boiler instruments, controls, welding, corrosion, and wear Air pollution, its abatement techniques and their effect on the design of boilers and auxiliaries Emerging technologies such as carbon capture, oxy-fuel combustion, and PFBC This reference covers almost every topic needed by boiler engineers in process and power plants. An encyclopedia by design and a professional reference book by focus and size, this volume is strong on fundamentals and design aspects as well as practical content. The scope and easy-to-navigate presentation of the material plus the numerous illustrations make this a unique reference for busy design, project, operation, and consulting engineers.

Modelling Diesel Combustion

Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Size: 64.14 MB
Format: PDF, Mobi
View: 787
Download
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Combustion

Author: J. Warnatz
Publisher: Springer Science & Business Media
ISBN: 3540259929
Size: 48.29 MB
Format: PDF, ePub, Docs
View: 5424
Download
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.

Biomass As A Sustainable Energy Source For The Future

Author: Wiebren de Jong
Publisher: John Wiley & Sons
ISBN: 1118916638
Size: 10.81 MB
Format: PDF, Kindle
View: 7380
Download
Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples

High Temperature Air Combustion

Author: Hiroshi Tsuji
Publisher: CRC Press
ISBN: 1420041037
Size: 26.70 MB
Format: PDF, ePub, Docs
View: 1557
Download
Maximize efficiency and minimize pollution: the breakthrough technology of high temperature air combustion (HiTAC) holds the potential to overcome the limitations of conventional combustion and allow engineers to finally meet this long-standing imperative. Research has shown that HiTAC technology can provide simultaneous reduction of CO2 and nitric oxide emissions and reduce energy consumption for a specific process or requirement. High Temperature Air Combustion: From Energy Conservation to Pollution Reduction provides the first comprehensive exposition of the principles and practice of HiTAC. With a careful balance of theory and practice, it reviews the historical background, clearly describes HiTAC combustion phenomena, and shows how to simulate and apply the technology for significant energy savings, reduced equipment size, and lower emissions. It offers design guidelines for high performance industrial furnaces, presents field trials of practical furnaces, and explores potential applications of HiTAC in other fields, including the conversion of solid waste fuels to cleaner fuels, stationary gas turbine engines, internal combustion engines, and other advanced energy-to-power conversion systems. Developed through an intensive research project sponsored by the Japanese government, HiTAC now promises to revolutionize our paradigm for using all kinds of fossil, alternative, waste, and derived fuels for energy conversion and utilization in industry. This book is your opportunity to understand its principles, learn about the technology, and begin to use it to the benefit of your application, your company, and the environment.

Thermal Energy

Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1315305933
Size: 36.84 MB
Format: PDF
View: 1650
Download
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Characteristics And Control Of Low Temperature Combustion Engines

Author: Rakesh Kumar Maurya
Publisher: Springer
ISBN: 3319685082
Size: 65.17 MB
Format: PDF
View: 1953
Download
This book deals with novel advanced engine combustion technologies having potential of high fuel conversion efficiency along with ultralow NOx and particulate matter (PM) emissions. It offers insight into advanced combustion modes for efficient utilization of gasoline like fuels. Fundamentals of various advanced low temperature combustion (LTC) systems such as HCCI, PCCI, PPC and RCCI engines and their fuel quality requirements are also discussed. Detailed performance, combustion and emissions characteristics of futuristic engine technologies such as PPC and RCCI employing conventional as well as alternative fuels are analyzed and discussed. Special emphasis is placed on soot particle number emission characterization, high load limiting constraints, and fuel effects on combustion characteristics in LTC engines. For closed loop combustion control of LTC engines, sensors, actuators and control strategies are also discussed. The book should prove useful to a broad audience, including graduate students, researchers, and professionals Offers novel technologies for improved and efficient utilization of gasoline like fuels; Deals with most advanced and futuristic engine combustion modes such as PPC and RCCI; Comprehensible presentation of the performance, combustion and emissions characteristics of low temperature combustion (LTC) engines; Deals with closed loop combustion control of advanced LTC engines; State-of-the-art technology book that concisely summarizes the recent advancements in LTC technology. .