Fully Tuned Radial Basis Function Neural Networks For Flight Control

Author: N. Sundararajan
Publisher: Springer Science & Business Media
ISBN: 1475752865
Size: 57.28 MB
Format: PDF, Kindle
View: 5421
Download
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.

Multi Resolution Methods For Modeling And Control Of Dynamical Systems

Author: Puneet Singla
Publisher: CRC Press
ISBN: 9781584887706
Size: 60.96 MB
Format: PDF, Docs
View: 3218
Download
Unifying the most important methodology in this field, Multi-Resolution Methods for Modeling and Control of Dynamical Systems explores existing approximation methods as well as develops new ones for the approximate solution of large-scale dynamical system problems. It brings together a wide set of material from classical orthogonal function approximation, neural network input-output approximation, finite element methods for distributed parameter systems, and various approximation methods employed in adaptive control and learning theory. With sufficient rigor and generality, the book promotes a qualitative understanding of the development of key ideas. It facilitates a deep appreciation of the important nuances and restrictions implicit in the algorithms that affect the validity of the results produced. The text features benchmark problems throughout to offer insights and illustrate some of the computational implications. The authors provide a framework for understanding the advantages, drawbacks, and application areas of existing and new algorithms for input-output approximation. They also present novel adaptive learning algorithms that can be adjusted in real time to the various parameters of unknown mathematical models.

Stable Adaptive Neural Network Control

Author: S.S. Ge
Publisher: Springer Science & Business Media
ISBN: 1475765770
Size: 31.84 MB
Format: PDF
View: 5903
Download
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.

Multisensor Decision And Estimation Fusion

Author: Yunmin Zhu
Publisher: Springer Science & Business Media
ISBN: 1461510457
Size: 28.92 MB
Format: PDF, ePub, Docs
View: 7256
Download
YUNMIN ZHU In the past two decades, multi sensor or multi-source information fusion tech niques have attracted more and more attention in practice, where observations are processed in a distributed manner and decisions or estimates are made at the individual processors, and processed data (or compressed observations) are then transmitted to a fusion center where the final global decision or estimate is made. A system with multiple distributed sensors has many advantages over one with a single sensor. These include an increase in the capability, reliability, robustness and survivability of the system. Distributed decision or estimation fusion prob lems for cases with statistically independent observations or observation noises have received significant attention (see Varshney's book Distributed Detec tion and Data Fusion, New York: Springer-Verlag, 1997, Bar-Shalom's book Multitarget-Multisensor Tracking: Advanced Applications, vol. 1-3, Artech House, 1990, 1992,2000). Problems with statistically dependent observations or observation noises are more difficult and have received much less study. In practice, however, one often sees decision or estimation fusion problems with statistically dependent observations or observation noises. For instance, when several sensors are used to detect a random signal in the presence of observation noise, the sensor observations could not be statistically independent when the signal is present. This book provides a more complete treatment of the fundamentals of multi sensor decision and estimation fusion in order to deal with general random ob servations or observation noises that are correlated across the sensors.

Fundamentals Of Artificial Neural Networks

Author: Mohamad H. Hassoun
Publisher: MIT Press
ISBN: 9780262082396
Size: 35.95 MB
Format: PDF, ePub
View: 5216
Download
Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy.Following the introduction, the book provides an overview of energy use patterns in the aggregate U.S. building population. Chapter 3 surveys work on the energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period.The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances).Solar Heat Technologies: Fundamentals and Applications, Volume 4

Neural Networks

Author: Simon Haykin
Publisher: IEEE
ISBN: 9780780334946
Size: 75.55 MB
Format: PDF, ePub
View: 7071
Download

Emerging Trends In Neuro Engineering And Neural Computation

Author: Asim Bhatti
Publisher: Springer
ISBN: 9811039577
Size: 28.90 MB
Format: PDF, Kindle
View: 7191
Download
This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologies/techniques in the medical domain in the treatment of neural disorders.

Parallel Architectures For Artificial Neural Networks

Author: N. Sundararajan
Publisher: Wiley-IEEE Computer Society Pr
ISBN: 9780818683992
Size: 67.29 MB
Format: PDF, ePub
View: 3273
Download
This excellent reference for all those involved in neural networks research and application presents, in a single text, the necessary aspects of parallel implementation for all major artificial neural network models. The book details implementations on varoius processor architectures (ring, torus, etc.) built on different hardware platforms, ranging from large general purpose parallel computers to custom built MIMD machines using transputers and DSPs. Experts who performed the implementations author the chapters and research results are covered in each chapter. These results are divided into three parts. Theoretical analysis of parallel implementation schemes on MIMD message passing machines. Details of parallel implementation of BP neural networks on a general purpose, large, parallel computer. Four chapters each describing a specific purpose parallel neural computer configuration. This book is aimed at graduate students and researchers working in artificial neural networks and parallel computing. Graduate level educators can use it to illustrate the methods of parallel computing for ANN simulation. The text is an ideal reference providing lucid mathematical analyses for practitioners in the field.

Engineering Applications Of Neural Networks

Author: Giacomo Boracchi
Publisher: Springer
ISBN: 3319651722
Size: 18.64 MB
Format: PDF, Kindle
View: 114
Download
This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).