Fracture And Fatigue Of Welded Joints And Structures

Author: K Macdonald
Publisher: Elsevier
ISBN: 0857092502
Size: 51.93 MB
Format: PDF, Kindle
View: 7492
Download
The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process. Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures. With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field. Analyses the processes and causes of fracture and fatigue, focusing predicting and minimising the failure of welded joints in the design process Assesses the fracture of welded joints and structure featuring constraint-based fracture mechanics for predicting joint failure Explores specific considerations in fatigue analysis including the assessment of local stresses in welded joints and fatigue design rules for welded structures

Fatigue Strength Of Welded Structures

Author: S. J. Maddox
Publisher: Woodhead Publishing
ISBN: 9781855730137
Size: 16.58 MB
Format: PDF, ePub
View: 4914
Download
Part 1 of the book provides a concise description of the fatigue behaviour of welded joints and factors which influence their fatigue lives. Part 2 concentrates on fatigue design methods, including the background and application of the design rules which have become the basis of all the modern UK, and some International, rules.

Fatigue Assessment Of Welded Joints By Local Approaches

Author: Dieter Radaj
Publisher: Woodhead Publishing
ISBN: 1845691881
Size: 21.69 MB
Format: PDF, Docs
View: 1365
Download
Local approaches to fatigue assessment are used to predict the structural durability of welded joints, to optimise their design and to evaluate unforeseen joint failures. This standard work provides a systematic survey of the principles and practical applications of the various methods. It covers the hot spot structural stress approach to fatigue in general, the notch stress and notch strain approach to crack initiation and the fracture mechanics approach to crack propagation. Seam-welded and spot-welded joints in structural steels and aluminium alloys are also considered. This completely reworked second edition takes into account the tremendous progress in understanding and applying local approaches which has been achieved in the last decade. It is a standard reference for designers, structural analysts and testing engineers who are responsible for the fatigue-resistant in-service behaviour of welded structures. Completely reworked second edition of a standard work providing a systematic survey of the principles and practical applications of the various methods Covers the hot spot structural stress approach to fatigue in general, the notch stress and notch strain approach to crack initiation and the fracture mechanics approach to crack propagation. Written by a distinguished team of authors

Fatigue Design Of Welded Joints And Components

Author: A. Hobbacher
Publisher: Woodhead Publishing
ISBN: 9781855733152
Size: 74.28 MB
Format: PDF, Docs
View: 7418
Download
These recommendations present general methods for the assessment of fatigue damage in welded components, which may affect the limit states of a structure, such as ultimate limit state and serviceability limited state. Fatigue resistance data is given for welded components made of wrought or extruded products of ferritic/pearlitic or banitic structural steels up to fy = 700 Mpa and of aluminium alloys commonly used for welded structures.

The Welding Engineer S Guide To Fracture And Fatigue

Author: Philippa L Moore
Publisher: Elsevier
ISBN: 1782423915
Size: 72.60 MB
Format: PDF, ePub
View: 2637
Download
The Welding Engineer's Guide to Fracture and Fatigue provides an essential introduction to fracture and fatigue and the assessment of these failure modes, through to the level of knowledge that would be expected of a qualified welding engineer. Part one covers the basic principles of weld fracture and fatigue. It begins with a review of the design of engineered structures, provides descriptions of typical welding defects and how these defects behave in structures undergoing static and cyclical loading, and explains the range of failure modes. Part two then explains how to detect and assess defects using fitness for service assessment procedures. Throughout, the book assumes no prior knowledge and explains concepts from first principles. Covers the basic principles of weld fracture and fatigue. Reviews the design of engineered structures, provides descriptions of typical welding defects and how these defects behave in structures undergoing static and cyclical loading, and explains the range of failure modes. Explains how to detect and assess defects using fitness for service assessment procedures.

Cumulative Damage Of Welded Joints

Author: T R Gurney
Publisher: Woodhead Publishing
ISBN: 1845691032
Size: 74.11 MB
Format: PDF, Docs
View: 6618
Download
Fatigue is a mechanism of failure which involves the formation and growth of cracks under the action of repeated stresses. Ultimately, a crack may propagate to such an extent that total fracture of the member may occur. To avoid fatigue it is essential to design the structure with inherent fatigue strength. However, fatigue strength for variable amplitude loading is not a constant material property and any calculations are necessarily built on a number of assumptions. Cumulative damage of welded joints explores the wealth of research in this important field and its implications for the design and manufacture of welded components. After an Introduction, chapter two introduces the constant amplitude database, which contains results obtained in test conditions and which forms the basis of the basic S-N curves for various types of joint. Chapter three discusses the influence of residual stresses which can have a marked effect on fatigue behaviour. Chapter four explores variable amplitude loading and the problem of how information from laboratory tests, obtained under constant amplitude conditions, can be applied to the design of structures for service conditions. This problem is further investigated in the next chapter which is devoted to two and three level load testing. Chapters six, seven and eight look at the influence that the variety of variable loading spectra can have on fatigue strength, whether narrow or wide band loading or cycles of small stress range. Taking all of this knowledge, chapter nine discusses structure designs. Cumulative damage of welded joints is a comprehensive source of invaluable information for welding engineers, supervisors, inspection personnel and designers. It will also be of great interest for academics working in the fields of structural and mechanical engineering. Covers the wealth of research in the field of fatigue strength and its role in the design and manufacture of welded components Invaluable reference source for welding engineers, supervisors, inspection personnel and designers

The Fatigue Strength Of Transverse Fillet Welded Joints

Author: T R Gurney
Publisher: Elsevier
ISBN: 0857093258
Size: 32.33 MB
Format: PDF, ePub, Docs
View: 7503
Download
This report is the result of a major study on the influence of both main plate thickness and of attachment size on the fatigue strength of joints with transverse non-load-carrying fillet welds. In particular, it defines the extent to which the size of the attachment might influence the thickness effect in such joints. Through a whole range of different tests, the study confirms that the present thickness effect correction for certain types of joint is too severe.

Iiw Recommendations On Methods For Improving The Fatigue Strength Of Welded Joints

Author: P J Haagensen
Publisher: Woodhead Publishing
ISBN: 1782420657
Size: 16.44 MB
Format: PDF, Docs
View: 6140
Download
The weld toe is a primary source of fatigue cracking because of the severity of the stress concentration it produces. Weld toe improvement can increase the fatigue strength of new structures significantly. It can also be used to repair or upgrade existing structures. However, in practice there have been wide variations in the actual improvements in fatigue strength achieved. Based on an extensive testing programme organised by the IIW, this report reviews the main methods for weld toe improvement to increase fatigue strength: burr grinding, TIG dressing and hammer and needle peening. The report provides specifications for the practical use of each method, including equipment, weld preparation and operation. It also offers guidance on inspection, quality control and training as well as assessments of fatigue strength and thickness effects possible with each technique. IIW recommendations on methods for improving the fatigue strength of welded joints will allow a more consistent use of these methods and more predictable increases in fatigue strength. Provides specifications for the practical use of each weld toe method, including equipment, weld preparation and operation Offers guidance on inspection, quality control and training, as well as assessments of fatigue strength and thickness effects possible with each technique This report will allow a more consistent use of these methods and more predictable increases in fatigue strength

Processes And Mechanisms Of Welding Residual Stress And Distortion

Author: Zhili Feng
Publisher: CRC Press
ISBN: 9780849334672
Size: 71.94 MB
Format: PDF, ePub, Docs
View: 1575
Download
As a fabrication technology, welding presents a number of technical challenges to the designer, manufacturer, and end-user of the welded structures. Both weld residual stress and distortion can significantly impair the performance and reliability of the welded structures. They must be properly dealt with during design, fabrication, and in-service use of the welded structures. There have been many significant and exciting developments on the subject in the past ten to fifteen years. Measurement techniques have been improved significantly. More importantly, the development of computational welding mechanics methods has been phenomenal. The progresses in the last decade or so have not only greatly expanded our fundamental understanding of the processes and mechanisms of residual stress and distortion during welding, but also have provided powerful tools to quantitatively determine the detailed residual stress and distortion information for a given welded structure. New techniques for effective residual stress and distortion mitigations and controls have also been applied in different industry sectors. Processes and Mechanisms of Welding Residual Stress and Distortion provides a comprehensive summary on the developments in the subject. It outlines theoretical treatments on heat transfer, solid mechanics and materials behavior that are essential for understanding and determining the welding residual stress and distortion. The approaches for computational methods and analysis methodology are described so that non specialists can follow them. There are chapters devoted to the discussion of various techniques for control and mitigation of residual stress and distortion, and residual stress and distortion results for various typical welded structures are provided. The second half of the book looks at case studies and practical solutions and provides insights into the techniques, challenges, limitations and future trends of each application. This book will not only be useful for advanced analysis of the subject, but also provide sufficient examples and practical solutions for welding engineers. With a panel of leading experts this authoritative book will be a valuable resource for welding engineers and designers as well as academics working in the fields of structural and mechanical engineering.