Flux Control In Biological Systems

Author: Ernst-Detlef Schulze
Publisher: Academic Press
ISBN: 0323139426
Size: 66.12 MB
Format: PDF, ePub
View: 5627
Comprehending and modelling biomass production, nutrient, and water fluxes in biological systems requires understanding control mechanisms at various levels of organiztion. This new book, with 16 pages of four-colorplates, compares patterns and mechanisms of regulation-starting from enzyme reactions and ending at the population and ecosystem level. By doing so, the book investigates the general principles of how fluxes are adjusted and regulated. Such principles areessential for preparing effective models and for predicting human impacts on ecosystems. Flux Control in Biological Systems: From Enzymes to Populations and Ecosystems will be an essential personal library addition for student and professional environmental biologists, ecologists, physiologists, biochemists, botanists, microbiologists, soil scientists, and zoologists; as well as anyone who investigate patterns of matter and energy transfer in biological systems of different levels of complexity. * Presents the mechanisms of flux control * Explains the similarities of flux control at various levels of complexity and organization * Demonstrates how fluxes are adjusted in complex systems of interacting groups of organisms

Monovalent Cations In Biological Systems

Author: Charles A. Pasternak
Publisher: CRC Press
ISBN: 9780849347757
Size: 52.59 MB
Format: PDF, ePub
View: 5359
This unique volume provides an integrated overview of the subject of monovalent cations, specifically aimed at students and researchers. It is divided into two parts: the first deals with the processes by which monovalent cations are transported across biological membranes; the second deals with the processes that are affected by changes in intracellular cations. Each chapter describes in simple biochemical terms the interaction between one or more monovalent cations and a particular biological system of importance to current understanding of body function in health and disease. This useful publication is invaluable to students and researchers in biochemistry, physiology, neurology, pharmacology, anesthesiology, cardio-pulmonology, hematology, laboratory medicine, endocrinology, gastroenterology, internal medicine, psychiatry, urology, biomedical physics and medical nutrition.

Dynamic Energy And Mass Budgets In Biological Systems

Author: S. A. L. M. Kooijman
Publisher: Cambridge University Press
ISBN: 9780521786089
Size: 17.89 MB
Format: PDF, ePub, Mobi
View: 3521
Describes a unifying theory which links different levels of biological organisation (cells, organisms and populations).

Biological Systems Complexity And Artificial Life

Author: Jacques Ricard
Publisher: Bentham Science Publishers
ISBN: 1608058123
Size: 60.17 MB
Format: PDF, Mobi
View: 1187
The exponential increase in computing power in the late twentieth century has allowed researchers to gather, process and analyze large volumes of information and construct rational paradigms of systems. Life sciences are no exception and computing advances have led to the birth of fields such as functional genomics and bioinformatics and facilitated an expansion of our understanding of biological systems. Biological Systems: Complexity and Artificial Life is an essential primer on systems biology for biologists and researchers having a multidisciplinary background. The volume covers a variety of theoretical models explaining biological processes. The book starts with an introductory chapter on the classical molecular biology paradigm and progresses towards concepts related to enzyme kinetics, non equilibrium dynamics, cellular thermodynamics, molecular motion in cells and more. The book concludes with a philosophical note on the concept of the biological system.

Water And Ions In Biological Systems

Author: Alberte Pullman
Publisher: Springer Science & Business Media
ISBN: 1489904247
Size: 68.71 MB
Format: PDF, Mobi
View: 2217
As the First International Conference on Water and Ions in Biological Systems (Bucharest, June 25-27, 1980) was appreciated as a success, a second one was organized in the fall of the year 1982 under the sponsorship of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Romanian Academy of Medical Sciences, the Romanian Biophysical Society (Union of Societies for Medical Sciences in the Socialist Republic of Romania) and in co operation with the International Union for Pure and Applied Bio physics (IUPAB). The responsibility for the scientific program and organization of the Second Conference on Water fell on an International Scientific Committee which included Prof. J. Tigyi (Pees), President of the UNESCO Expert Committee on Biophysics, Prof. K. Wuthrich, Secretary General of IUPAB and Prof. H. Eisenberg, (member of the IUPAB Council) under the guidance of an Executive Board whose members were Prof. J. Jaz (representative of UNESCO), Prof. B. Pullman (Vice President of IUPAB) and Prof. V. Vasilescu (President of the Romanian Biophysical Society). The Meeting was attended by more than 250 specialists including 150 Romanian participants and others from Bulgaria, Czechoslovakia, England, the Federal Republic of Germany, the German Democratic Republic, Greece, Hungary, India, Israel, Italy, Japan, the Netherlands, Nigeria, Poland, Sweden, Switzerland, USSR, USA, Venezuela, Yugoslavia. The proceedings of the Conference took place in the Medical Faculty of Bucharest. The theoretical and practical importance of the Meeting was pointed out by the speakers, among whom were Prof.

A Systems Theoretic Approach To Systems And Synthetic Biology I Models And System Characterizations

Author: Vishwesh Kulkarni
Publisher: Springer
ISBN: 9401790418
Size: 14.16 MB
Format: PDF, ePub
View: 6192
The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems. More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology. Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources. In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.

Ecophysiology Of Coniferous Forests

Author: William K. Smith
Publisher: Academic Press
ISBN: 0080925936
Size: 67.67 MB
Format: PDF
View: 6638
Conifers--pine, fir, and spruce trees--are dominant species in forests around the world. This book focuses on the physiology of conifers and how these physiological systems operate. Special consideration is devoted to the means by which ecophysiological processes influence organismal function and distribution. Chapters focus on the genetics of conifers, their geographic distribution and the factors that influence this distribution, the impact of insect herbivory on ecophysiological parameters, the effects of air pollution, and the potential impact that global climatic changes will have upon conifers. Because of the growing realization that forests have a crucial role to play in global environmental health, this book will appeal to a developing union of ecologists, physiologists and more theoretically minded foresters.

Physiology Biophysics And Biomedical Engineering

Author: Andrew W Wood
Publisher: Taylor & Francis
ISBN: 1466552794
Size: 19.15 MB
Format: PDF, Kindle
View: 2329
Physiology, Biophysics and Biomedical Engineering provides a multidisciplinary understanding of biological phenomena and the instrumentation for monitoring these phenomena. It covers the physical phenomena of electricity, pressure, and flow along with the adaptation of the physics of the phenomena to the special conditions and constraints of biological systems. While the text focuses on human biological systems, some of the principles also apply to plants, bacteria, and other animals. The first section of the book presents a general introduction to physiological systems and describes specialized methods used to record electrical events from biological tissue. The next part examines molecules involved in cell transport and signaling as well as the proteins relevant in cells’ ability to contract and generate tension. The text goes on to cover the properties of the heart, blood, and circulation and the monitoring of cardiac and circulatory function. It then discusses the importance of the interrelationship of pressures and flows in organ systems, such as the lungs and kidneys, and details the organization and function of the nervous system. After focusing on the systems used to monitor signals, the book explores modeling, biomechanics, and emerging technologies, including the progressive miniaturization of sensors and actuators in biomedical engineering. Developed from the authors’ courses in medical biophysics and biomedical instrumentation, this book shows how biophysics and biomedical engineering have advanced modern medicine. It brings together the physical principles underlying human physiological processes and the physical methods used to monitor these processes. Requiring only basic mathematical knowledge, the text supplements mathematical formulae with qualitative explanations and illustrations to encourage an intuitive grasp on the processes discussed.

Systems Biology

Author: Lilia Alberghina
Publisher: Springer Science & Business Media
ISBN: 9783540742692
Size: 77.16 MB
Format: PDF, ePub
View: 2743
For life to be understood and disease to become manageable, the wealth of postgenomic data now needs to be made dynamic. This development requires systems biology, integrating computational models for cells and organisms in health and disease; quantitative experiments (high-throughput, genome-wide, living cell, in silico); and new concepts and principles concerning interactions. This book defines the new field of systems biology and discusses the most efficient experimental and computational strategies. The benefits for industry, such as the new network-based drug-target design validation, and testing, are also presented.