Fibrewise Homotopy Theory

Author: Michael Charles Crabb
Publisher: Springer Science & Business Media
ISBN: 1447112652
Size: 52.25 MB
Format: PDF, ePub, Docs
View: 7601
Download
Topology occupies a central position in modern mathematics, and the concept of the fibre bundle provides an appropriate framework for studying differential geometry. Fibrewise homotopy theory is a very large subject that has attracted a good deal of research in recent years. This book provides an overview of the subject as it stands at present.

Parametrized Homotopy Theory

Author: J. Peter May
Publisher: American Mathematical Soc.
ISBN: 0821839225
Size: 79.24 MB
Format: PDF, ePub
View: 2860
Download
This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.

The Geometric Hopf Invariant And Surgery Theory

Author: Michael Crabb
Publisher: Springer
ISBN: 331971306X
Size: 57.32 MB
Format: PDF, Docs
View: 2425
Download
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.

Noncommutative Geometry And Physics 3

Author: Giuseppe Dito
Publisher: World Scientific
ISBN: 9814425028
Size: 25.90 MB
Format: PDF, Mobi
View: 5812
Download
Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics. Contents:K-Theory and D-Branes, Shonan:The Local Index Formula in Noncommutative Geometry Revisited (Alan L Carey, John Phillips, Adam Rennie and Fedor A Sukochev)Semi-Finite Noncommutative Geometry and Some Applications (Alan L Carey, John Phillips and Adam Rennie)Generalized Geometries in String Compactification Scenarios (Tetsuji Kimura)What Happen to Gauge Theories under Noncommutative Deformation? (Akifumi Sako)D-Branes and Bivariant K-Theory (Richard J Szabo)Two-Sided Bar Constructions for Partial Monoids and Applications to K-Homology Theory (Dai Tamaki)Twisting Segal's K-Homology Theory (Dai Tamaki)Spectrum of Non-Commutative Harmonic Oscillators and Residual Modular Forms (Kazufumi Kimoto and Masato Wakayama)Coarse Embeddings and Higher Index Problems for Expanders (Qin Wang)Deformation Quantization and Noncommutative Geometry, RIMS:Enriched Fell Bundles and Spaceoids (Paolo Bertozzini, Roberto Conti and Wicharn Lewkeeratiyutkul)Weyl Character Formula in KK-Theory (Jonathan Block and Nigel Higson)Recent Advances in the Study of the Equivariant Brauer Group (Peter Bouwknegt, Alan Carey and Rishni Ratnam)Entire Cyclic Cohomology of Noncommutative Manifolds (Katsutoshi Kawashima)Geometry of Quantum Projective Spaces (Francesco D'Andrea and Giovanni Landi)On Yang–Mills Theory for Quantum Heisenberg Manifolds (Hyun Ho Lee)Dilatational Equivalence Classes and Novikov–Shubin Type Capacities of Groups, and Random Walks (Shin-ichi Oguni)Deformation Quantization of Gauge Theory in ℝ4 and U(1) Instanton Problems (Yoshiaki Maeda and Akifumi Sako)Dualities in Field Theories and the Role of K-Theory (Jonathan Rosenberg)Dualities in Field Theories and the Role of K-Theory (Jonathan Rosenberg) Readership: Researchers and graduate students in Mathematical Physics and Applied Mathematics. Keywords:Noncommutative Geometry;Deformation Quantizations;D-Brane;K-Theory;T-Duality

Noncommutative Geometry And Physics 3

Author: Giuseppe Dito
Publisher: World Scientific
ISBN: 981442501X
Size: 73.76 MB
Format: PDF, Docs
View: 3330
Download
Noncommutative differential geometry has many actual and potential applications to several domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field.

Geometry Topology

Author:
Publisher:
ISBN:
Size: 41.41 MB
Format: PDF, ePub, Mobi
View: 5920
Download
Fully refereed international journal dealing with all aspects of geometry and topology and their applications.