Entropy Based Design And Analysis Of Fluids Engineering Systems

Author: Greg F. Naterer
Publisher: CRC Press
ISBN: 9781420006919
Size: 45.77 MB
Format: PDF, ePub, Docs
View: 4660
Download
From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow processes, ranging from optimized flow configurations in an aircraft engine to highly ordered crystal structures in a turbine blade. Entropy Based Design of Fluid Engineering Systems provides an overview of EBD as an emerging technology with applications to aerospace, microfluidics, heat transfer, and other disciplines. The text extends past analytical methods of Entropy Generation Minimization to numerical simulations involving more complex configurations and experimental measurement techniques. The book begins with an extensive development of basic concepts, including the mathematical properties of entropy and exergy, as well as statistical and numerical formulations of the second law. It then goes on to describe topics related to incompressible flows and the Second Law in microfluidic systems. The authors develop computational and experimental methods for identifying problem regions within a system through the local rates of entropy production. With these techniques, designers can use EBD to focus on particular regions where design modifications can be made to improve system performance. Numerous case studies illustrate the concepts in each chapter, and cover an array of applications including supersonic flows, condensation and turbulence. A one-of-a-kind reference, Entropy Based Design of Fluid Engineering Systems outlines new advances showing how local irreversibilities can be detected in complex configurations so that engineering devices can be re-designed locally to improve overall performance.

Advanced Engineering Thermodynamics

Author: Adrian Bejan
Publisher: John Wiley & Sons
ISBN: 1119052092
Size: 56.90 MB
Format: PDF, Docs
View: 3885
Download
An advanced, practical approach to the first and second laws of thermodynamics Advanced Engineering Thermodynamics bridges the gap between engineering applications and the first and second laws of thermodynamics. Going beyond the basic coverage offered by most textbooks, this authoritative treatment delves into the advanced topics of energy and work as they relate to various engineering fields. This practical approach describes real-world applications of thermodynamics concepts, including solar energy, refrigeration, air conditioning, thermofluid design, chemical design, constructal design, and more. This new fourth edition has been updated and expanded to include current developments in energy storage, distributed energy systems, entropy minimization, and industrial applications, linking new technologies in sustainability to fundamental thermodynamics concepts. Worked problems have been added to help students follow the thought processes behind various applications, and additional homework problems give them the opportunity to gauge their knowledge. The growing demand for sustainability and energy efficiency has shined a spotlight on the real-world applications of thermodynamics. This book helps future engineers make the fundamental connections, and develop a clear understanding of this complex subject. Delve deeper into the engineering applications of thermodynamics Work problems directly applicable to engineering fields Integrate thermodynamics concepts into sustainability design and policy Understand the thermodynamics of emerging energy technologies Condensed introductory chapters allow students to quickly review the fundamentals before diving right into practical applications. Designed expressly for engineering students, this book offers a clear, targeted treatment of thermodynamics topics with detailed discussion and authoritative guidance toward even the most complex concepts. Advanced Engineering Thermodynamics is the definitive modern treatment of energy and work for today's newest engineers.

Beyond The Second Law

Author: Roderick C. Dewar
Publisher: Springer
ISBN: 3642401546
Size: 43.37 MB
Format: PDF, ePub, Mobi
View: 5773
Download
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, evolutionary biology and technology, fluid turbulence, microbial biogeochemistry, plasma physics, and radiative transport, using a wide variety of analytical and experimental techniques. Beyond The Second Law will appeal to students and researchers wishing to gain an understanding of entropy production and its central place in the science of non-equilibrium systems – both in detail and in terms of the bigger picture.

Diesel Engine System Design

Author: Qianfan Xin
Publisher: Elsevier
ISBN: 0857090836
Size: 52.98 MB
Format: PDF, ePub
View: 6811
Download
Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems Focuses on engine performance and system integration including important approaches for modelling and analysis Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories

Modern Fluid Dynamics

Author: Clement Kleinstreuer
Publisher: Springer Science & Business Media
ISBN: 9048120950
Size: 48.36 MB
Format: PDF, ePub, Mobi
View: 2363
Download
This textbook covers essentials of traditional and modern fluid dynamics, i. e. , the fundamentals of and basic applications in fluid mechanics and convection heat transfer with brief excursions into fluid-particle dynamics and solid mechanics. Specifically, it is suggested that the book can be used to enhance the knowledge base and skill level of engineering and physics students in macro-scale fluid mechanics (see Chaps. 1–5 and 10), followed by an int- ductory excursion into micro-scale fluid dynamics (see Chaps. 6 to 9). These ten chapters are rather self-contained, i. e. , most of the material of Chaps. 1–10 (or selectively just certain chapters) could be taught in one course, based on the students’ background. Typically, serious seniors and first-year graduate students form a receptive audience (see sample syllabus). Such as target group of students would have had prerequisites in thermodynamics, fluid mechanics and solid mechanics, where Part A would be a welcomed refresher. While introductory fluid mechanics books present the material in progressive order, i. e. , employing an inductive approach from the simple to the more difficult, the present text adopts more of a deductive approach. Indeed, understanding the derivation of the basic equations and then formulating the system-specific equations with suitable boundary conditions are two key steps for proper problem solutions.

Fluid Mechanics

Author: Bijay Sultanian
Publisher: CRC Press
ISBN: 1466598999
Size: 80.11 MB
Format: PDF
View: 2864
Download
Fluid Mechanics: An Intermediate Approach addresses the problems facing engineers today by taking on practical, rather than theoretical problems. Instead of following an approach that focuses on mathematics first, this book allows you to develop an intuitive physical understanding of various fluid flows, including internal compressible flows with simultaneous area change, friction, heat transfer, and rotation. Drawing on over 40 years of industry and teaching experience, the author emphasizes physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications. Numerous worked-out examples and illustrations are used in the book to demonstrate various problem-solving techniques. The book covers compressible flow with rotation, Fanno flows, Rayleigh flows, isothermal flows, normal shocks, and oblique shocks; Bernoulli, Euler, and Navier-Stokes equations; boundary layers; and flow separation. Includes two value-added chapters on special topics that reflect the state of the art in design applications of fluid mechanics Contains a value-added chapter on incompressible and compressible flow network modeling and robust solution methods not found in any leading book in fluid mechanics Gives an overview of CFD technology and turbulence modeling without its comprehensive mathematical details Provides an exceptional review and reinforcement of the physics-based understanding of incompressible and compressible flows with many worked-out examples and problems from real-world fluids engineering applications Fluid Mechanics: An Intermediate Approach uniquely aids in the intuitive understanding of various fluid flows for their physics-based analyses and quantitative predictions needed in the state-of-the-art thermofluids research and industrial design applications.

Advanced Heat Transfer Second Edition

Author: Greg F. Naterer
Publisher: CRC Press
ISBN: 135126222X
Size: 30.90 MB
Format: PDF, Kindle
View: 260
Download
Advanced Heat Transfer, Second Edition provides a comprehensive presentation of intermediate and advanced heat transfer, and a unified treatment including both single and multiphase systems. It provides a fresh perspective, with coverage of new emerging fields within heat transfer, such as solar energy and cooling of microelectronics. Conductive, radiative and convective modes of heat transfer are presented, as are phase change modes. Using the latest solutions methods, the text is ideal for the range of engineering majors taking a second-level heat transfer course/module, which enables them to succeed in later coursework in energy systems, combustion, and chemical reaction engineering.

Introduction To Thermal And Fluid Engineering

Author: Allan D. Kraus
Publisher: CRC Press
ISBN: 1420088084
Size: 68.31 MB
Format: PDF, Mobi
View: 5496
Download
Introduction to Thermal and Fluid Engineering combines coverage of basic thermodynamics, fluid mechanics, and heat transfer for a one- or two-term course for a variety of engineering majors. The book covers fundamental concepts, definitions, and models in the context of engineering examples and case studies. It carefully explains the methods used to evaluate changes in equilibrium, mass, energy, and other measurable properties, most notably temperature. It then also discusses techniques used to assess the effects of those changes on large, multi-component systems in areas ranging from mechanical, civil, and environmental engineering to electrical and computer technologies. Includes a motivational student study guide on CD to promote successful evaluation of energy systems This material helps readers optimize problem solving using practices to determine equilibrium limits and entropy, as well as track energy forms and rates of progress for processes in both closed and open thermodynamic systems. Presenting a variety of system examples, tables, and charts to reinforce understanding, the book includes coverage of: How automobile and aircraft engines work Construction of steam power plants and refrigeration systems Gas and vapor power processes and systems Application of fluid statics, buoyancy, and stability, and the flow of fluids in pipes and machinery Heat transfer and thermal control of electronic components Keeping sight of the difference between system synthesis and analysis, this book contains numerous design problems. It would be useful for an intensive course geared toward readers who know basic physics and mathematics through ordinary differential equations but might not concentrate on thermal/fluids science much further. Written by experts in diverse fields ranging from mechanical, chemical, and electrical engineering to applied mathematics, this book is based on the assertion that engineers from all walks absolutely must understand energy processes and be able to quantify them.

Entropy Generation Through Heat And Fluid Flow

Author: Adrian Bejan
Publisher: John Wiley & Sons Inc
ISBN:
Size: 77.22 MB
Format: PDF, Mobi
View: 7348
Download
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.