Elementary Number Theory With Programming

Author: Marty Lewinter
Publisher: John Wiley & Sons
ISBN: 1119062764
Size: 19.22 MB
Format: PDF, Mobi
View: 4144
Download
Filling a much-needed gap in the current literature, this book expertly bridges the subjects of number theory and programming and features a multitude of examples and programming exercises in each chapter. It provides an introduction to elementary number theory with fundamental coverage of computer programming and is appropriate for students of mathematics and computer science alike who need to become acquainted with the most famous theorems, problems, and concepts of number theory. In addition, the authors provide a comprehensive presentation of the methodology and applications for readers with various levels of experience, and while theorems are provided, the authors avoid the standard theorem/proof format to aid in reader comprehension. The book features sample programs and research challenges at the end of each chapter for readers to work through, as well as an appendix that provides select answers to the chapter exercises. The authors also maintain a supplementary material website that provides additional working examples of the computer programs. Topical coverage includes: special numbers; Fibonacci sequence, primes, and the Pell equation; Pascal's triangle; divisors and prime decomposition; modular arithmetic; number theoretic functions; Euler's Phi function; sums and partitions; and cryptography. Prerequisites include basic algebra and some knowledge of any computer language.

Elementary Number Theory Cryptography And Codes

Author: M. Welleda Baldoni
Publisher: Springer Science & Business Media
ISBN: 9783540692003
Size: 21.52 MB
Format: PDF, Kindle
View: 1464
Download
In this volume one finds basic techniques from algebra and number theory (e.g. congruences, unique factorization domains, finite fields, quadratic residues, primality tests, continued fractions, etc.) which in recent years have proven to be extremely useful for applications to cryptography and coding theory. Both cryptography and codes have crucial applications in our daily lives, and they are described here, while the complexity problems that arise in implementing the related numerical algorithms are also taken into due account. Cryptography has been developed in great detail, both in its classical and more recent aspects. In particular public key cryptography is extensively discussed, the use of algebraic geometry, specifically of elliptic curves over finite fields, is illustrated, and a final chapter is devoted to quantum cryptography, which is the new frontier of the field. Coding theory is not discussed in full; however a chapter, sufficient for a good introduction to the subject, has been devoted to linear codes. Each chapter ends with several complements and with an extensive list of exercises, the solutions to most of which are included in the last chapter. Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

Elementary Number Theory With Applications

Author: Thomas Koshy
Publisher: Elsevier
ISBN: 9780080547091
Size: 56.58 MB
Format: PDF, ePub
View: 1864
Download
This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East

Elementary Number Theory

Author: James K. Strayer
Publisher: Waveland Press
ISBN: 1478610409
Size: 66.14 MB
Format: PDF, ePub, Mobi
View: 914
Download
In this student-friendly text, Strayer presents all of the topics necessary for a first course in number theory. Additionally, chapters on primitive roots, Diophantine equations, and continued fractions allow instructors the flexibility to tailor the material to meet their own classroom needs. Each chapter concludes with seven Student Projects, one of which always involves programming a calculator or computer. All of the projects not only engage students in solving number-theoretical problems but also help familiarize them with the relevant mathematical literature.

Number Theory For Computing

Author: Song Y. Yan
Publisher: Springer Science & Business Media
ISBN: 366204773X
Size: 13.37 MB
Format: PDF, Mobi
View: 6931
Download
This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.

Elementary Number Theory Primes Congruences And Secrets

Author: William Stein
Publisher: Springer Science & Business Media
ISBN: 0387855254
Size: 40.29 MB
Format: PDF
View: 5699
Download
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.

A Course In Number Theory And Cryptography

Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1468403109
Size: 12.28 MB
Format: PDF
View: 4485
Download
The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. Because number theory and cryptography are fast-moving fields, this new edition contains substantial revisions and updated references.

Programming For Mathematicians

Author: Raymond Seroul
Publisher: Springer Science & Business Media
ISBN: 3642571298
Size: 19.35 MB
Format: PDF, Kindle
View: 6436
Download
Aimed at teaching mathematics students how to program using their knowledge of mathematics, the entire books emphasis is on "how to think" when programming. Three methods for constructing an algorithm or a program are used: manipulation and enrichment of existing code; use of recurrent sequences; deferral of code writing, in order to deal with one difficulty at a time. Many theorems are mathematically proved and programmed, and the text concludes with an explanation of how a compiler works and how to compile "by hand" little programs. Intended for anyone who thinks mathematically and wants to program and play with mathematics.

Basic Category Theory For Computer Scientists

Author: Benjamin C. Pierce
Publisher: MIT Press
ISBN: 9780262660716
Size: 79.84 MB
Format: PDF, ePub
View: 4391
Download
Basic Category Theory for Computer Scientists provides a straightforward presentationof the basic constructions and terminology of category theory, including limits, functors, naturaltransformations, adjoints, and cartesian closed categories.