Distributed Autonomous Robotic Systems 7

Author: Maria Gini
Publisher: Springer Science & Business Media
ISBN: 4431358811
Size: 63.84 MB
Format: PDF, Mobi
View: 6963
Download
This book collects papers selected by an international program committee for presentation at the 8th International Symposium on Distributed Autonomous Robotic Systems. The papers present state of the art research advances in the field of distributed robotics. What makes this book distinctive is the emphasis on using multiple robots and on making them autonomous, as opposed to being teleoperated. Novel algorithms, system architectures, technologies, and numerous applications are covered.

Distributed Autonomous Robotic Systems

Author: Roderich Groß
Publisher: Springer
ISBN: 3319730088
Size: 51.54 MB
Format: PDF
View: 6809
Download
Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications.

Distributed Autonomous Robotic Systems 2

Author: Hajime Asama
Publisher: Springer Science & Business Media
ISBN: 4431669426
Size: 68.70 MB
Format: PDF, ePub, Docs
View: 1022
Download
Great interest is now focused on distributed autonomous robotic systems (DARS) as a new strategy for the realization of flexible, robust, and intelligent robots. Inspired by autonomous, decentralized, and self-organizing biological systems, the field of DARS encompasses broad interdisciplinary technologies related not only to robotics and computer engineering but also to biology and psychology. The rapidly growing interest in this new area of research was manifest in the first volume of Distributed Autonomous Robotic Systems, published in 1994. This second volume in the series presents the most recent work by eminent researchers and includes such topics as multirobot control, distributed robotic systems design, self-organizing systems, and sensing and navigation for cooperative robots. Distributed Autonomous Robotic Systems 2 is a valuable source for those whose work involves robotics and will be of great interest to those in the fields of artificial intelligence, self-organizing systems, artificial life, and computer science.

Distributed Autonomous Robotic Systems

Author: M. Ani Hsieh
Publisher: Springer
ISBN: 3642551467
Size: 54.73 MB
Format: PDF, Mobi
View: 4488
Download
Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Coordination for Perception, Coverage, and Tracking; Task Allocation and Coordination Strategies; Modular Robots and Novel Mechanisms and Sensors; Formation Control and Planning for Robot Teams; and Learning, Adaptation, and Cognition for Robot Teams.

Distributed Autonomous Robotic Systems 3

Author: Tim Lueth
Publisher: Springer Science & Business Media
ISBN: 3642721982
Size: 60.88 MB
Format: PDF
View: 458
Download
Distributed autonomous robotic systems (DARS) are systems composed of multiple autonomous units such as modules, cells, processors, agents, and robots. Combination or cooperative operation of multiple autonomous units is expected to lead to desirable features such as flexibility, fault tolerance, and efficiency. The DARS is the leading established conference on distributed autonomous systems. All papers have the common goal to contribute solutions to the very demanding task of designing distributed systems to realize robust and intelligent robotic systems.

Distributed Autonomous Robotic Systems

Author: Nak-Young Chong
Publisher: Springer
ISBN: 4431558799
Size: 47.65 MB
Format: PDF, ePub
View: 3470
Download
This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems.

Distributed Autonomous Robotic Systems 4

Author: Lynne Parker
Publisher: Springer Science & Business Media
ISBN: 4431679197
Size: 79.32 MB
Format: PDF
View: 654
Download
The Fifth International Symposium on Distributed Autonomous Robotic Systems (DARS 2000) dealt with new strategies to realize complex, modular, robust, and fault-tolerant robotic systems. Technologies, algorithms, and system architectures for distributed autonomous robotic systems were presented and discussed during the meeting. DARS 2000 was truly an international event, with participants represent ing eleven countries from Europe, Asia, and the Americas. All of the papers in this volume were presented at DARS 2000, and were selected on the basis of peer re views to ensure quality and relevance. These papers have the common goal of con tributing solutions to realize robust and intelligent multirobot systems. The topics of the symposium address a wide range of issues that are important in the development of decentralized robotic systems. These topics include architec tures, communication, biological inspirations, reconfigurable robots, localization, exploration and mapping, distributed sensing, multi robot motion coordination, tar get assignment and tracking, multirobot learning, and cooperative object transport. DARS clearly requires a broad area of interdisciplinary technologies related not only to robotics and computer engineering, but also to biology and psychology. The DARS symposium is the leading established conference on distributed au tonomous systems. The First, Second, and Third International Symposia on Distrib uted Autonomous Robotic Systems (DARS '92, DARS '94, and DARS '96) were held at the Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.

Introduction To Autonomous Mobile Robots

Author: Roland Siegwart
Publisher: MIT Press
ISBN: 0262015358
Size: 43.62 MB
Format: PDF, Kindle
View: 4637
Download
Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t Introduction -- |g 1.2. |t An Overview of the Book -- |g 2. |t Locomotion -- |g 2.1. |t Introduction -- |g 2.1.1. |t Key issues for locomotion -- |g 2.2. |t Legged Mobile Robots -- |g 2.2.1. |t Leg configurations and stability -- |g 2.2.2. |t Consideration of dynamics -- |g 2.2.3. |t Examples of legged robot locomotion -- |g 2.3. |t Wheeled Mobile Robots -- |g 2.3.1. |t Wheeled locomotion: The design space -- |g 2.3.2. |t Wheeled locomotion: Case studies -- |g 2.4. |t Aerial Mobile Robots -- |g 2.4.1. |t Introduction -- |g 2.4.2. |t Aircraft configurations -- |g 2.4.3. |t State of the art in autonomous VTOL -- |g 2.5. |t Problems -- |g 3. |t Mobile Robot Kinematics -- |g 3.1. |t Introduction -- |g 3.2. |t Kinematic Models and Constraints -- |g 3.2.1. |t Representing robot position -- |g 3.2.2. |t Forward kinematic models -- |g 3.2.3. |t Wheel kinematic constraints -- |g 3.2.4. |t Robot kinematic constraints -- |g 3.g 3.3. |t Mobile Robot Maneuverability -- |g 3.3.1. |t Degree of mobility -- |g 3.3.2. |t Degree of steerability -- |g 3.3.3. |t Robot maneuverability -- |g 3.4. |t Mobile Robot Workspace -- |g 3.4.1. |t Degrees of freedom -- |g 3.4.2. |t Holonomic robots -- |g 3.4.3. |t Path and trajectory considerations -- |g 3.5. |t Beyond Basic Kinematics -- |g 3.6. |t Motion Control (Kinematic Control) -- |g 3.6.1. |t Open loop control (trajectory-following) -- |g 3.6.2. |t Feedback control -- |g 3.7. |t Problems -- |g 4. |t Perception -- |g 4.1. |t Sensors for Mobile Robots -- |g 4.1.1. |t Sensor classification -- |g 4.1.2. |t Characterizing sensor performance -- |g 4.1.3. |t Representing uncertainty -- |g 4.1.4. |t Wheel/motor sensors -- |g 4.1.5. |t Heading sensors -- |g 4.1.6. |t Accelerometers -- |g 4.1.7. |t Inertial measurement unit (IMU) -- |g 4.1.8. |t Ground beacons -- |g 4.1.9. |t Active ranging -- |g 4.1.10. |t Motion/speed sensors -- |g 4.1.11. |t Vision sensors -- |g 4.2. |t Fundameng 4.2.5. |t Structure from stereo -- |g 4.2.6. |t Structure from motion -- |g 4.2.7. |t Motion and optical flow -- |g 4.2.8. |t Color tracking -- |g 4.3. |t Fundamentals of Image Processing -- |g 4.3.1. |t Image filtering -- |g 4.3.2. |t Edge detection -- |g 4.3.3. |t Computing image similarity -- |g 4.4. |t Feature Extraction -- |g 4.5. |t Image Feature Extraction: Interest Point Detectors -- |g 4.5.1. |t Introduction -- |g 4.5.2. |t Properties of the ideal feature detector -- |g 4.5.3. |t Corner detectors -- |g 4.5.4. |t Invariance to photometric and geometric changes -- |g 4.5.5. |t Blob detectors -- |g 4.6. |t Place Recognition -- |g 4.6.1. |t Introduction -- |g 4.6.2. |t From bag of features to visual words -- |g 4.6.3. |t Efficient location recognition by using an inverted file -- |g 4.6.4. |t Geometric verification for robust place recognition -- |g 4.6.5. |t Applications -- |g 4.6.6. |t Other image representations for place recognition -- |g 4.7. |t Feature Extraction Based ong 4.7.3. |t Range histogram features -- |g 4.7.4. |t Extracting other geometric features -- |g 4.8. |t Problems -- |g 5. |t Mobile Robot Localization -- |g 5.1. |t Introduction -- |g 5.2. |t The Challenge of Localization: Noise and Aliasing -- |g 5.2.1. |t Sensor noise -- |g 5.2.2. |t Sensor aliasing -- |g 5.2.3. |t Effector noise -- |g 5.2.4. |t An error model for odometric position estimation -- |g 5.3. |t To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- |g 5.4. |t Belief Representation -- |g 5.4.1. |t Single-hypothesis belief -- |g 5.4.2. |t Multiple-hypothesis belief -- |g 5.5. |t Map Representation -- |g 5.5.1. |t Continuous representations -- |g 5.5.2. |t Decomposition strategies -- |g 5.5.3. |t State of the art: Current challenges in map representation -- |g 5.6. |t Probabilistic Map-Based Localization -- |g 5.6.1. |t Introduction -- |g 5.6.2. |t The robot localization problem -- |g 5.6.3. |t Basic concepts of probability theory -- |gg 5.6.6. |t Classification of localization problems -- |g 5.6.7. |t Markov localization -- |g 5.6.8. |t Kalman filter localization -- |g 5.7. |t Other Examples of Localization Systems -- |g 5.7.1. |t Landmark-based navigation -- |g 5.7.2. |t Globally unique localization -- |g 5.7.3. |t Positioning beacon systems -- |g 5.7.4. |t Route-based localization -- |g 5.8. |t Autonomous Map Building -- |g 5.8.1. |t Introduction -- |g 5.8.2. |t SLAM: The simultaneous localization and mapping problem -- |g 5.8.3. |t Mathematical definition of SLAM -- |g 5.8.4. |t Extended Kalman Filter (EKF) SLAM -- |g 5.8.5. |t Visual SLAM with a single camera -- |g 5.8.6. |t Discussion on EKF SLAM -- |g 5.8.7. |t Graph-based SLAM -- |g 5.8.8. |t Particle filter SLAM -- |g 5.8.9. |t Open challenges in SLAM -- |g 5.8.10. |t Open source SLAM software and other resources -- |g 5.9. |t Problems -- |g 6. |t Planning and Navigation -- |g 6.1. |t Introduction -- |g 6.2. |t Competences for Navigation: Planning and Reactig 6.4. |t Obstacle avoidance -- |g 6.4.1. |t Bug algorithm -- |g 6.4.2. |t Vector field histogram -- |g 6.4.3. |t The bubble band technique -- |g 6.4.4. |t Curvature velocity techniques -- |g 6.4.5. |t Dynamic window approaches -- |g 6.4.6. |t The Schlegel approach to obstacle avoidance -- |g 6.4.7. |t Nearness diagram -- |g 6.4.8. |t Gradient method -- |g 6.4.9. |t Adding dynamic constraints -- |g 6.4.10. |t Other approaches -- |g 6.4.11. |t Overview -- |g 6.5. |t Navigation Architectures -- |g 6.5.1. |t Modularity for code reuse and sharing -- |g 6.5.2. |t Control localization -- |g 6.5.3. |t Techniques for decomposition -- |g 6.5.4. |t Case studies: tiered robot architectures -- |g 6.6. |t Problems -- |t Bibliography -- |t Books -- |t Papers -- |t Referenced Webpages.

Multiagent Systems

Author: Gerhard Weiss
Publisher: MIT Press
ISBN: 0262018896
Size: 23.43 MB
Format: PDF
View: 1017
Download
This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.