Differential Forms In Algebraic Topology

Author: Raoul Bott
Publisher: Springer Science & Business Media
ISBN: 1475739516
Size: 45.51 MB
Format: PDF, Mobi
View: 7404
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

An Introduction To Manifolds

Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Size: 45.97 MB
Format: PDF
View: 2168
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Differential Geometry

Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Size: 28.14 MB
Format: PDF, Docs
View: 4773
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Using The Mathematics Literature

Author: Kristine K. Fowler
Publisher: CRC Press
ISBN: 9780824750350
Size: 27.70 MB
Format: PDF
View: 7541
This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.

Introduction To Geometry And Topology

Author: Werner Ballmann
Publisher: Birkhäuser
ISBN: 3034809832
Size: 33.29 MB
Format: PDF, ePub, Docs
View: 6069
This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.

Differential Algebraic Topology

Author: Matthias Kreck
Publisher: American Mathematical Soc.
ISBN: 0821848984
Size: 23.29 MB
Format: PDF, ePub, Mobi
View: 357
This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.

An Introduction To Algebraic Topology

Author: Joseph J. Rotman
Publisher: Springer Science & Business Media
ISBN: 1461245761
Size: 47.61 MB
Format: PDF, Mobi
View: 1548
A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

A Geometric Approach To Differential Forms

Author: David Bachman
Publisher: Springer Science & Business Media
ISBN: 0817683046
Size: 79.31 MB
Format: PDF, ePub, Mobi
View: 5715
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

A User S Guide To Algebraic Topology

Author: C.T. Dodson
Publisher: Springer Science & Business Media
ISBN: 9780792342939
Size: 55.98 MB
Format: PDF, ePub, Docs
View: 6066
This book arose from courses taught by the authors, and is designed for both instructional and reference use during and after a first course in algebraic topology. It is a handbook for users who want to calculate, but whose main interests are in applications using the current literature, rather than in developing the theory. Typical areas of applications are differential geometry and theoretical physics. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. We show how to calculate homotopy groups, homology groups and cohomology rings of most of the major theories, exact homotopy sequences of fibrations, some important spectral sequences, and all the obstructions that we can compute from these. Our approach is to mix illustrative examples with those proofs that actually develop transferable calculational aids. We give extensive appendices with notes on background material, extensive tables of data, and a thorough index. Audience: Graduate students and professionals in mathematics and physics.

Supersymmetric Field Theories

Author: Sergio Cecotti
Publisher: Cambridge University Press
ISBN: 1316214001
Size: 19.71 MB
Format: PDF, Mobi
View: 7135
Adopting an elegant geometrical approach, this advanced pedagogical text describes deep and intuitive methods for understanding the subtle logic of supersymmetry while avoiding lengthy computations. The book describes how complex results and formulae obtained using other approaches can be significantly simplified when translated to a geometric setting. Introductory chapters describe geometric structures in field theory in the general case, while detailed later chapters address specific structures such as parallel tensor fields, G-structures, and isometry groups. The relationship between structures in supergravity and periodic maps of algebraic manifolds, Kodaira–Spencer theory, modularity, and the arithmetic properties of supergravity are also addressed. Relevant geometric concepts are introduced and described in detail, providing a self-contained toolkit of useful techniques, formulae and constructions. Covering all the material necessary for the application of supersymmetric field theories to fundamental physical questions, this is an outstanding resource for graduate students and researchers in theoretical physics.