Differential Equations For Engineers And Scientists

Author: Yunus A. Çengel
Publisher: McGraw-Hill Europe
ISBN: 9780071310420
Size: 40.38 MB
Format: PDF, ePub
View: 1494
Differential Equations for Engineers and Scientists is intended to be used in a first course on differential equations taken by science and engineering students. It covers the standard topics on differential equations with a wealth of applications drawn from engineering and science--with more engineering-specific examples than any other similar text. The text is the outcome of the lecture notes developed by the authors over the years in teaching differential equations to engineering students. Like Yunus Cengel's other texts, the material is introduced at a level that a typical student can follow comfortably, and the authors have made the text speak to the students and not over them. Differential Equations for Engineers and Scientists is written in plain language to help students learn the material without being hampered by excessive rigor or jargon. The friendly tone and the logical order are designed to motivate the student to read the book with interest and enthusiasm.

Handbook Of Linear Partial Differential Equations For Engineers And Scientists Second Edition

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1466581492
Size: 26.64 MB
Format: PDF, Kindle
View: 2399
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Differential Equations For Engineers

Author: David V. Kalbaugh
Publisher: CRC Press
ISBN: 1498798829
Size: 75.82 MB
Format: PDF, ePub, Docs
View: 1516
This book surveys the broad landscape of differential equations, including elements of partial differential equations (PDEs), and concisely presents the topics of most use to engineers. It introduces each topic with a motivating application drawn from electrical, mechanical, and aerospace engineering. The text has reviews of foundations, step-by-step explanations, and sets of solved problems. It fosters students’ abilities in the art of approximation and self-checking. The book addresses PDEs with and without boundary conditions, which demonstrates strong similarities with ordinary differential equations and clear illustrations of the nature of solutions. Furthermore, each chapter includes word problems and challenge problems. Several extended computing projects run throughout the text.

Numerical Time Dependent Partial Differential Equations For Scientists And Engineers

Author: Moysey Brio
Publisher: Academic Press
ISBN: 9780080917047
Size: 74.33 MB
Format: PDF, Kindle
View: 6099
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Fuzzy Differential Equations And Applications For Engineers And Scientists

Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1315355531
Size: 27.42 MB
Format: PDF
View: 6251
Differential equations play a vital role in the modeling of physical and engineering problems, such as those in solid and fluid mechanics, viscoelasticity, biology, physics, and many other areas. In general, the parameters, variables and initial conditions within a model are considered as being defined exactly. In reality there may be only vague, imprecise or incomplete information about the variables and parameters available. This can result from errors in measurement, observation, or experimental data; application of different operating conditions; or maintenance induced errors. To overcome uncertainties or lack of precision, one can use a fuzzy environment in parameters, variables and initial conditions in place of exact (fixed) ones, by turning general differential equations into Fuzzy Differential Equations ("FDEs"). In real applications it can be complicated to obtain exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic, creating the need for use of reliable and efficient numerical techniques in the solution of fuzzy differential equations. These include fuzzy ordinary and partial, fuzzy linear and nonlinear, and fuzzy arbitrary order differential equations. This unique work?provides a new direction for the reader in the use of basic concepts of fuzzy differential equations, solutions and its applications. It can serve as an essential reference work for students, scholars, practitioners, researchers and academicians in engineering and science who need to model uncertain physical problems.

Theory Of Differential Equations In Engineering And Mechanics

Author: Kam Tim Chau
Publisher: CRC Press
ISBN: 1498767796
Size: 62.92 MB
Format: PDF, ePub
View: 1770
This gives comprehensive coverage of the essential differential equations students they are likely to encounter in solving engineering and mechanics problems across the field -- alongside a more advance volume on applications. This first volume covers a very broad range of theories related to solving differential equations, mathematical preliminaries, ODE (n-th order and system of 1st order ODE in matrix form), PDE (1st order, 2nd, and higher order including wave, diffusion, potential, biharmonic equations and more). Plus more advanced topics such as Green’s function method, integral and integro-differential equations, asymptotic expansion and perturbation, calculus of variations, variational and related methods, finite difference and numerical methods. All readers who are concerned with and interested in engineering mechanics problems, climate change, and nanotechnology will find topics covered in these books providing valuable information and mathematics background for their multi-disciplinary research and education.

Artificial Neural Networks For Engineers And Scientists

Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1351651315
Size: 45.97 MB
Format: PDF, ePub, Docs
View: 2947
Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.

A First Course In Differential Equations Modeling And Simulation

Author: Carlos A. Smith
Publisher: CRC Press
ISBN: 1439850879
Size: 36.46 MB
Format: PDF, ePub, Mobi
View: 6401
Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for obtaining the analytical solution of differential equations and Laplace transforms. In addition, the authors discuss how these equations describe mathematical systems and how to use software to solve sets of equations where analytical solutions cannot be obtained. Using simple physics, the book introduces dynamic modeling, the definition of differential equations, two simple methods for obtaining their analytical solution, and a method to follow when modeling. It then presents classical methods for solving differential equations, discusses the engineering importance of the roots of a characteristic equation, and describes the response of first- and second-order differential equations. A study of the Laplace transform method follows with explanations of the transfer function and the power of Laplace transform for obtaining the analytical solution of coupled differential equations. The next several chapters present the modeling of translational and rotational mechanical systems, fluid systems, thermal systems, and electrical systems. The final chapter explores many simulation examples using a typical software package for the solution of the models developed in previous chapters. Providing the necessary tools to apply differential equations in engineering and science, this text helps readers understand differential equations, their meaning, and their analytical and computer solutions. It illustrates how and where differential equations develop, how they describe engineering systems, how to obtain the analytical solution, and how to use software to simulate the systems.

Differential Equations For Engineers

Author: Wei-Chau Xie
Publisher: Cambridge University Press
ISBN: 1139488163
Size: 72.87 MB
Format: PDF, Mobi
View: 1982
Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

Nonlinear Ordinary Differential Equations

Author: R. Grimshaw
Publisher: Routledge
ISBN: 135142808X
Size: 64.54 MB
Format: PDF, ePub, Docs
View: 782
Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.